Fundamental Systems of Analytic Solutions of Fuchsian Type Partial Differential Equations

By
Hidetoshi TAHARA
(Sophia University, Japan)

In this paper, we discuss the existence of fundamental systems of analytic solutions for Fuchsian type partial differential equations treated in Tahara [3][4]. If the characteristic exponents of the equation do not differ by positive integers, the existence of fundamental systems is established in [4]. Here, we generalize this result to some more general case where the characteristic exponents may differ by positive integers. Throughout this paper, we use the same notations and terminologies as in [4].

§ 1. Fuchsian type equations

Let \((t, z) \in \mathbb{C} \times \mathbb{C}^n\) and let

\[P(t, z, D_t, D_z) = t^m D_t^m + P_1(t, z, D_z) t^{m-1} D_t^{m-1} + \cdots + P_m(t, z, D_z) \]

be a linear partial differential operator of order \(m\) whose coefficients are holomorphic functions defined in a neighbourhood of the origin. We impose the following conditions on \(P\):

(A-1) the order of \(P_j(t, z, D_z)\) \(\leq j\) for \(1 \leq j \leq m\),
(A-2) the order of \(P_j(0, z, D_z)\) = 0 for \(1 \leq j \leq m\).

Then, the operator \(P\) is said to be of Fuchsian type with respect to \(t\) (Baouendi-Goulaouic [1], Tahara [3][4]). By (A-2), \(P_j(0, z, D_z)\) is a function of \(z\). We set \(P_j(0, z, D_z) = a_j(z)\). Then the indicial equation associated with \(P\) is defined by

\[0 = \lambda(\lambda - 1) \cdots (\lambda - m + 1) + a_1(z)\lambda(\lambda - 1) \cdots (\lambda - m + 2) + \cdots + a_m(z). \]

The roots, which we denote by \(\rho_1(z), \ldots, \rho_m(z)\), are called the characteristic exponents of \(P\). Further we assume the following condition:

(A-3) the order of \((D_t^l P_j)(0, z, D_z)\) < \(j\) for \(1 \leq j \leq m\) and \(0 \leq l \leq n_0\),

where \(n_0\) is the non negative integer defined by

\begin{equation}
1.1 \quad n_0 = \max (Z \cap [\rho_i(0) - \rho_j(0); 1 \leq i, j \leq m]).
\end{equation}

Under these assumptions (A-1), (A-2) and (A-3), we have
Theorem 1. Let $\tilde{\mathcal{O}}$ be the set of all germs of multivalued holomorphic functions on $C \times C^n - \{t=0\}$ near the origin. Then the equation $Pu=f$ is always solvable in $\tilde{\mathcal{O}}$. Moreover, there exist holomorphic functions $K_j(t, z, w) (1 \leq j \leq m)$ on

$$\{(t, z, w) \in (\tilde{C}-0) \times C^n \times C^n; |t|, |z|, |w| < \varepsilon,$$

$$0 < |t| < M|z_i - w_i|^{n-1} \text{ for } i = 1, \ldots, n\}$$

(where $\tilde{C}-0$ means the universal covering space of $C-0$)

which satisfy the following conditions:

1. For any holomorphic functions $\varphi_j(z) (1 \leq j \leq m)$ at the origin, we set

$$u(t, z) = \sum_{j=1}^{m} \int K_j(t, z, w)\varphi_j(w)dw.$$

Then $u(t, z)$ is a solution of the equation $Pu=f$ in $\tilde{\mathcal{O}}$.

2. If $u(t, z) \in \tilde{\mathcal{O}}$ and $Pu=0$ holds, then $u(t, z)$ is uniquely expressed in the form (1).

Remark 1. We call $\{K_j(t, z, w); 1 \leq j \leq m\}$ a fundamental system of solutions in $\tilde{\mathcal{O}}$. See Section 1.3 in [4].

Remark 2. If $\rho_i(0) - \rho_j(0) \notin Z - \{0\}$ holds for $1 \leq i, j \leq m$, then we have $n_0 = 0$. In this case, (A-3) is trivial from (A-2) and the above conditions coincide with those assumed in [3] and [4].

§ 2. Fuchsian systems

Let $(t, z) \in C \times C^n$ and let

$$P(t, z, D_t, D_z) = tD_t - A(t, z, D_z)$$

be an $m \times m$ matrix of differential operators whose coefficients are holomorphic functions defined in a neighbourhood of the origin. We impose the following conditions on P:

(B-1) the matrix order of $A(t, z, D_z) \leq 1$,

(B-2) the order of $A_{ij}(0, z, D_z) = 0$ for $1 \leq i, j \leq m$,

where $A_{ij}(t, z, D_z)$ is the (i, j) component of the matrix $A(t, z, D_z)$. Then, the operator P is said to be a Fuchsian system with respect to t (Tahara [4]). By (B-2), $A(0, z, D_z)$ is a matrix of functions of z. We set $A(0, z, D_z) = A_0(z)$. Then the roots of the equation $\det (\lambda - A_0(0)) = 0$, that we denote by $\alpha_1, \ldots, \alpha_m$, are called the characteristic eigen-values of P. Further we assume the following condition:

(B-3) the matrix order of $(D_t^l A)(0, z, D_z) < 1$ for $0 \leq l \leq n_0$,

where n_0 is the non negative integer defined by
Fuchsian Type Partial Differential Equations

(2.1) \[n_{0} = \max (Z \cap \{\alpha_{i} - \alpha_{j}; 1 \leq i, j \leq m\}). \]

Under these assumptions (B-1), (B-2) and (B-3), we have

Theorem 2. The equation \(Pu = f \) is always solvable in \(\tilde{\mathcal{O}} \). Moreover, there exists a matrix \(K(t, z, w) \) of holomorphic functions on

\[\{(t, z, w) \in (C-0) \times C^{n} \times C^{n}; |t|, |z|, |w| < \varepsilon, \]

\[0 < |t| < M |z_{i} - w_{i}|^{s-1} \text{ for } i = 1, \ldots, n \} \]

(where \(s \) is the \(F \)-degree of \(P \))

which satisfies the following conditions:

1. For any holomorphic function \(\varphi(z) \) at the origin, we set

\[u(t, z) = \oint K(t, z, w)\varphi(w)dw. \]

Then \(u(t, z) \) is a solution of the equation \(Pu = 0 \) in \(\tilde{\mathcal{O}} \).

2. If \(u(t, z) \in \mathcal{O} \) and \(Pu = 0 \) holds, then \(u(t, z) \) is uniquely expressed in the form (1).

§ 3. Proofs of Theorems 1 and 2

Before the proofs of Theorems 1 and 2, we prepare some lemmas.

Lemma 1. Let \(P_{A} = tD_{t} - A(t, z, D_{z}) \), \(P_{B} = tD_{t} - B(t, z, D_{z}) \) be two Fuchsian systems (of size \(m \)) with respect to \(t \) and let \(s_{A}, s_{B} \) be the \(F \)-degrees of \(P_{A}, P_{B} \) respectively. Put

\[\tilde{P}(t, z, w, D_{t}, D_{z}, D_{w}) = tD_{t} - I_{m} \otimes A(t, z, D_{z}) + B(t, w, D_{w}) \otimes I_{m}, \]

where \(\otimes \) means the Kronecker product of matrices. Then we have

1. \(\tilde{P} \) is also a Fuchsian system with respect to \(t \),

2. the \(F \)-degree of \(\tilde{P} \leq s_{A} + s_{B} - 1 \).

Proof. First, we will show (1). We set

\[A(t, z, D_{2}) = (A_{ij}(t, z, D_{2}))_{1 \leq i, j \leq m}; \]

\[B(t, z, D_{3}) = (B_{ij}(t, z, D_{3}))_{1 \leq i, j \leq m}; \]

\[C(t, z, w, D_{w}) = I_{m} \otimes A(t, z, D_{2}) - B(t, w, D_{w}) \otimes I_{m} \]

\[= (C_{ij,kl})_{1 \leq i, j, k, l \leq m}; \]

\[C_{ij,kl} = \delta_{ik}A_{jl}(t, z, D_{2}) - \delta_{jl}B_{ik}(t, w, D_{w}). \]

Since the matrix orders of \(A(t, z, D_{2}) \) and \(B(t, z, D_{3}) \) are at most 1, we can take
vectors \((n_1, \ldots, n_m), (m_1, \ldots, m_m)\) of integers such that \(\text{ord} A_{ij}(t, z, D_z) \leq n_i - n_j + 1\) and \(\text{ord} B_{kl}(t, z, D_z) \leq m_k - m_l + 1\) for \(1 \leq i, j, k, l \leq m\). Then, by the definition of \(C(t, z, w, D_z, D_w)\) we have
\[
\text{ord} C_{ijkl}(t, z, w, D_z, D_w) \leq (n_j + m_i) - (n_i + m_j) + 1
\]
for \(1 \leq i, j, k, l \leq m\). Therefore, the matrix order of \(C(t, z, w, D_z, D_w)\) is also at most 1. On the other hand, it is clear that \(C(0, z, w, D_z, D_w)\) is a matrix of functions. Therefore, \(\tilde{P}\) is a Fuchsian system (of size \(m^2\)) with respect to \(t\). Thus, (1) is proved.

Next, we will show (2). Denote the \(F\)-degree of \(\tilde{P}\) by \(\tilde{s}\). If \(\tilde{s} = 1\), then (2) is clear because \(s_d \geq 1\) and \(s_B \geq 1\). If \(\tilde{s} > 1\), then by the definition of the \(F\)-degree we can find a cyclic permutation \(((i_1, j_1), (i_2, j_2), \ldots, (i_q, j_q) = (k, l))\) of length \(p\) such that \(\tilde{s} = |(n_j + m_i) - (n_i + m_j)| + 1\) and
\[
\delta_{iv_{v+1}} A_{0,jv_{v+1}}(z) - \delta_{jv_{v+1}} B_{0,iv_{v+1}}(w) \equiv 0
\]
for \(1 \leq v \leq p - 1\). In this case, (2) is easily obtained from the following facts:
\[
|n_j - n_i| + 1 \leq s_d, \tag{3.2}
\]
\[
|m_i - m_k| + 1 \leq s_B. \tag{3.3}
\]
Therefore, we have only to show (3.2) and (3.3). (3.2) is verified as follows. If \(j = l\), then (3.2) is trivial because \(s_d \geq 1\). If \(j \neq l\), then by the same argument as in the proof of Lemma 1.3.7 in [4] we can choose a subset \(\{j_{a_1}, \ldots, j_{a_q}\}\) of \(\{j_1, \ldots, j_q\}\) which satisfies the following conditions:
(i) \(1 \leq a_1 < a_2 < \cdots < a_q \leq p\);
(ii) \(j_{a_1}, \ldots, j_{a_q}\) are distinct;
(iii) \(j = j_{a_1}, j_{a_{p+1} - 1} = 1 \leq \mu \leq g - 1), j_{a_q} = l\).
Then \((j_{a_1} = j, j_{a_2} = j, \ldots, j_{a_q} = l)\) is a cyclic permutation and for this cycle
\[
A_{0,ja_1(p-1) + 1}(z) = A_{0,ja_1(p+1) - 1}A_{0,ja_1(p+1)}(z) \neq 0
\]
where \(a(\mu) = a_\mu\) and \(a(\mu + 1) = a_{\mu + 1}\)
holds for \(1 \leq \mu \leq g - 1\) from (3.1). This implies \(|n_j - n_i| + 1 \leq s_d\). Thus, (3.2) is proved. The proof of (3.3) is the same as (3.2). Therefore, the proof of (2) is completed.

Lemma 2. Let \(P = tD_t - A(t, z, D_z)\) be a Fuchsian system (of size \(m\)) with respect to \(t\) and let \(s\) be the \(F\)-degree of \(P\). Then, there exists an invertible matrix \(U = U(t, z, D_z)\) in \(M(m, \mathcal{D}(2s - 1))\) which satisfies the equation
\[
\begin{align*}
U^{-1}PU &= tD_t - \sum_{k=0}^{m} t^k A_k(z, D_z), \\
U|_{t=0} &= I \quad \text{and} \quad D_t U|_{t=0} = 0 \quad \text{for} \quad 1 \leq l \leq n_0.
\end{align*}
\]
where \(A_{k}=(1/k!)(D^{k}A)_{|z=0} \) and \(n_{0} \) is the non negative integer defined by (2.1). Here, \(\mathcal{D}(2s-1) \) means the ring of formal differential operators of degree at most \(2s-1 \).

Proof. Let

\[
\tilde{P} = tD_{t} - I_{m} \otimes A(t, z, D_{z}) + \sum_{k=0}^{n_{0}} t^{k}(\bar{A}_{k}(w, D_{w}) \otimes I_{m}),
\]

where \(\bar{A}_{k}(w, D_{w}) \) is the formal adjoint operator of \(A_{k}(w, D_{w}) \). Then, from Lemma 1 we have

1. \(\tilde{P} \) is also a Fuchsian system with respect to \(t \),
2. the F-degree of \(\tilde{P} \leq 2s-1 \).

Hence, using (1) and (2) instead of Lemma 1.3.7 in [4] we can easily obtain this lemma by the same argument as in the proof of Theorem 1.3.6 in [4]. Therefore we may omit the details.

Lemma 3. Let \(Q = tD_{t} - B(t, z, D_{z}) \) be an \(m \times m \) matrix of differential operators near the origin and assume that the matrix order of \(B(t, z, D_{z}) < 1 \). Then, there exists an invertible matrix \(V = V(t, z, D_{z}) \) of differential operators on \(\tilde{U} = \{(t, z) \in (\mathbb{C} - 0) \times C^{n}; 0 < |t| < \varepsilon, |z| < \varepsilon \} \) which satisfies the equation

\[
V^{-1}QV = tD_{t}
\]
on \(\tilde{U} \).

Proof. Take any \(t_{0} \neq 0 \). Then, making use of Remark 2 in pp. 447–448 of Sato-Kawai-Kashiwara [2] we can find an invertible matrix \(V = V(t, z, D_{z}) \) of differential operators on \(U_{0} = \{(t, z) \in C \times C^{n}; |t - t_{0}| < \delta_{0}, |z| < \varepsilon_{0} \} \) (where \(0 < \delta_{0} < |t_{0}| \) and \(0 < \varepsilon_{0} \)) which satisfies the equation

\[
\begin{cases}
QV = VtD_{t}, \\
V|_{z=t_{0}} = I
\end{cases}
\]
on \(U_{0} \). Since we can choose \(\varepsilon_{0} > 0 \) independent of \(t_{0} \), this immediately leads us to Lemma 3.

Proof of Theorem 2. From Lemma 2 we can find \(U = U(t, z, D_{z}) \) in \(GL(m, \mathcal{D}(2s-1)) \) such that \(U^{-1}(tD_{t} - A(t, z, D_{z}))U = tD_{t} - \sum_{k=0}^{n_{0}} t^{k}A_{k}(z, D_{z}) \). Further, applying Lemma 3 to the operator \(tD_{t} - \sum_{k=0}^{n_{0}} t^{k}A_{k}(z, D_{z}) \) we have \(V^{-1}(tD_{t} - \sum_{k=0}^{n_{0}} t^{k}A_{k}(z, D_{z}))V = tD_{t} \), for some invertible matrix \(V = V(t, z, D_{z}) \) of differential operators on \(\{(t, z) \in (\mathbb{C} - 0) \times C^{n}; 0 < |t| < \varepsilon, |z| < \varepsilon \} \). Since the mapping \(U V : \mathcal{E} \rightarrow \mathcal{E} \) is invertible, the equation \(Pu = f(u, f \in \mathcal{E}) \) is equivalent to the equation \(tD_{t}v = g(u, g \in \mathcal{E}) \) under the relations \(u = UVu \) and \(g = UVf \). Note that the operator \(UV \) can be expressed by an integral operator whose kernel function is holomorphic on
\[(t, z, w) \in (C - 0) \times C^n \times C^n; |t|, |z|, |w| < \varepsilon, 0 < |t| < M |z_i - w_i|^{2s-1} \text{ for } i = 1, \ldots, n\].

Therefore, Theorem 2 is clear. Q.E.D.

Proof of Theorem 1. Let \(P \) be the operator in Theorem 1. Then the equation \(Pu = f \) is equivalent to

\[
\begin{pmatrix}
0, & 1, & 1, & 2, & \cdots \\
1, & -P_m, & -P_m - 1, & \cdots, & -P_1 + m - 1 \\
1, & -P_{m-1}, & \cdots, & 1, & \cdots \\
2, & \cdots & \cdots & \cdots & \cdots \\
1, & \cdots & \cdots & \cdots & \cdots \\
\end{pmatrix}
\begin{pmatrix}
u_1 \\
u_2 \\
\vdots \\
u_m
\end{pmatrix}
=
\begin{pmatrix}0 \\
0 \\
\vdots \\
f
\end{pmatrix}
\]

under the relations \(u_j = t^{j-1} D_t^{j-1} u \) for \(1 \leq j \leq m \). Therefore, applying Theorem 2 to the above equation we can easily obtain Theorem 1. Q.E.D.

References

nuna adreso:
Department of Mathematics
Sophia University
Kioicho, Chiyoda-ku, Tokyo
102, Japan

(Ricevita la 4-an de februaro, 1980)