PageHeader : Funkcialaj Ekvacioj, 23 (1980) 97-122 Title : Monodromy Group of the System for Appell'sF4 AuthorInfo : By AuthorInfo : Kyoichi TAKANO* AuthorInfo : (Kobe University, Japan) subsection : Introduction section : Chapter I. Fundamental solutions of $(F_{4})$ subsection : 1. Solutions of system $(F_{4})$ subsubsection : 1.1. Solutions of Gauss equation. The differential equation subsection : 2. Auxiliary functions subsection : 3. Relations subsection : 4. Linear independence of $\{z_{j}(x, y)\}_{1\leqq j\leqq 4}$ section : Chapter II. Monodromy group of $(F_{4})$ subsection : 5. Generators of $\pi_{1}(C^{2}-S;(x_{0}, y_{0}))$ subsection : 6. The behavior of X as a function of $v$ subsection : 7. Analytic continuations of $\{z_{j}\}_{1\leqq j\leqq 4}$ along $\Gamma_{1}$ and $\Gamma_{2}$ subsubsection : 7.1. subsubsection : 7.2. Continuation of $z_{1}(x, y)$ along $\Gamma_{1}$ . subsubsection : 7.3. Continuation of $z_{2}(x, y)$ along $\Gamma_{1}$ . subsubsection : 7.4. Continuation of $z_{3}(x, y)$ along $\Gamma_{1}$ . subsubsection : 7.5. Continuation of $z_{4}(x, y)$ along $\Gamma_{1}$ . subsection : 8. Analytic continuations of $\{z_{j}\}_{1\leqq j\leqq 4}$ along $\Gamma_{3}$ subsubsection : 8.1. subsubsection : 8.2. Continuation of $z_{1}(x, y)$ along $\Gamma_{3}$ . subsubsection : 8.3. Continuation of $z_{2}(x, y)$ along $\Gamma_{3}$ . subsubsection : 8.4. Continuation of $z_{3}(x, y)$ along $\Gamma_{3}$ . subsubsection : 8.5. Continuation of $z_{4}(x, y)$ along $\Gamma_{3}$ . section : References