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§0. Introduction

Consider the initial value problem
(E) | %=1, %)
© x(t)) = X,

In 1923 Kneser [9] proved, in the case where f is continuous, that cross-sections of
solution funnel emanating from an initial point are continuum (compact and con-
nected). Among the interesting generalization which followed, we point out the
Hukuhara’s one [5]. He proved that the set of all solutions of the initial value pro-
blem (E)-(C) on any compact subinterval 7 of [, &), where

[%, «)= N{Dom x: x is a solution of (E)-(C)}N[z,, 4 o),

is a continuum in the Banach space C(Z, C").

In this paper we consider the case where the function f satisfies the Caratheodory
conditions locally in its domain. The main purpose is to give some “‘informations”
for the cross-section at the extreme point f=« in the case where o<+ oo. These
results are new even in the case when f'is continuous.

Throughout this paper, we will denote by |- | one of the usual equivalent norms
on the n-dimensional complex space C* and by B(4, C") the vector space of all con-
tinuous and bounded C"-valued functions defined on a subset 4 of a metric space.
This space with norm || - ||

k| =sup {h@)|: z € 4}

is a Banach space. In particular, if the set 4 is compact, then B(4, C")=C(4, C").
The conceptions of measure of a subset A of the real line take it out R of metri-
zability an dintegrability of a C"-valued function % defined on the set 4 should be

*) This paper is a part of the author’s Doctoral Thesis submitted to the School of Physics
and Mathematics of the University of Ioannina.
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understood in the sence of Lebesque. We will denote by L(4, C") the set of all inte-
grable C"-valued functions defined on 4, L(A4, R)=L(A).
' Let ©2 be a subset of RXX C". The set of all Caratheodory functions on 2 (cf.
[13, p. 183]) will be denoted by Car (£2). The set of all C*-valued functions which
satisfy the Caratheodory conditions locally in £, i.e. for any compact subset W of Q2
it follows that (f| W) e Car (W), will be denoted by Car,, (£2).
We also use the notations

pri2={t € R: There exists x ¢ C* with (¢, x) € £}

pr.f2={x e C*: There exists ¢t € R with (¢, x) € 2}.
If h e Car () and m € L(pr,(£)) is a function such that
|2, )| <m(2) for every (¢, x) e 2

we will say that m characterizes f'e Car (£2). Moreover, for a solution x of (E)-(C)
we will denote by G(x; P,) its graph, i.e.
G(x; P)={(t, x(¢)): t € Dom x}, Py=(ty, x(1,))

and by G(x|A4; P,) the graph of its restriction on the subset 4 of Dom x.

§1. Existence, extension and dependence of solutions

The first theorem of this section is an adaptation of the well-known existence
theorem of Caratheodory (cf. [13, p. 185]).

Theorem 1.1. Consider the initial value problem (E)-(C) and let x,e (pr,2)° and
U be a neighborhood of the point P, such that the restriction (f|UN Q) e Car (UN Q).
If b>0 is such that for some 6 >0 v

[% L+ 01X {x € C": |[x—x,|Z<bBISUN LK

and m e L (pr(UN Q)) is a function characterizing the (f|UN L) e Car (UN Q), then
there exists a solution x: [t,, t,]—C" of (E)-(C) with

t,=sup {tgto: Jt m(s)ds <b and [t,, t]X{x e C": |x—x,|<b}SUN .Q}>t0.
to

If we replace the assumption fe Ca‘rloc (2) by fe Car () and set U=C", then
the above theorem leads to the usual formulation of Caratheodory theorem [13].

Remark 1.1. Under the assumptions of the above theorem, it is clear that all
solutions of the initial value problem (E)-(C) are defined (at least) on the interval
[%,, t,], hence the common interval of definition of all solutions of (E)-(C) is not trivial.
More generally: If W is a compact subset of £2°, then there exists a 6 >0 such that all
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solutions x of the differential equation (E) with x(¢t)=§& and P=(z,&) € W are defined
(at least) on the interval [z, t+0].

A solution x of the differential equation (E) is continuable if, and only if, there
exists a solution of the equation (E) which is a proper extension of x. In the sequel
we will denote by ¥(P,) the set of all noncontinuable solutions of the initial value
problem (E)-(C). In general, however, the functions x € X¥(P,) have not the same
domain.

For example, the functions
XO=(NT=10), 0<i<I,
y@)=1+1/2)+(3/8)¢%, (1/4)t%),  t=0

are clearly noncontinuable solutions of the initial value problem

%,=(1/2)xi—[(15/4)+ (10/4)t 4 (45/32)t* 4-(27/64)t* 4 (27/256)1 ‘] x, Xy = /Xy
x(0)=1,  x,0)=0.

On the other hand, by the previous Remark 1.1, it follows that the intersection of the
domains of all x € X(P,), 1.e.

Dom %(P,)= N{Dom x: x € X(P,)}

is a nontrivial interval.

In the following, our attention will be concentrated to the restrictions of the
functions x ¢ ¥(P,) on some subinterval I of Dom X(P,). More precisely, we will be
interesting in the set

X(I; P)={x|1:x e X(Py)}.
Also we use the notations
Qr={t,x)e Q:t>1,} and Q ={(t, x)e 2:1t<1t}

Dom* x=[f,, + co) N Dom x and Dom~ x=(— oo, f,J(1 Dom x, x € ¥(P,) and
Dom* ¥(P))=[t,, + o) N Dom %(P,) and Dom~ X(P;)=(— oo, f,] N Dom X(P,).
We remark that the interval Dom™* x (resp. Dom™ x) is open at one of its endpoints
if the set 2+ (resp. 2°) is open (and nonempty). Moreover, if £ is open, then the

interval Dom x is open too.

The next step is to prove that for the graph G(x; P,) of any solution x ¢ X(P,)
we have

Dist (G(x; P,), 32)=0.

This is essentially contained in Prop. 1.1, Th. 1.2, and Cor. 1.1, the proofs of which
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follow the same lines of some known methods. However, these propositions generalize
some results of Coppel [3, p. 15], Coddington and Levinson [2, p. 61], and Bebernes,

Fulks and Meisters [1].
Also, the forms of these propositions will be such that to service the study of

other problems of this paper.

Proposition 1.1. Let W be a compact subset of 2, P,e W°and x e X(P)). Then:
a) There exists a t, € Dom~ x such that

(t,, x(1)) € W and  G(x|[t,, t,]; PY)S W.
B) There exists a t, e Dom™ x such that
(t, x(2,)) € OW  and  G(x|[t, t,]; PY)S W.

Theorem 1.2. If the set 2+ (resp. 27) is open and nonempty, then, for any solu-
tion x € X(P,), every limit point of the graph G(x|Dom"* x; Py) (resp. G(x| Dom~ x; P,))
not lying to it, lies to the set

822 N [{sup Dom x} X C"] (resp. 02 N[{inf Dom x} X C"]).

Corollary 1.1. Let Q=1IXC", where I is an open interval of R, and x € X(P,).
If Dom* x=[t,, ®) and ¢ € I, then
lim |x(2)|= + oo.

t—a

Proof. We assume the contrary. Then, there exists a sequence {t,} in [7,, «)
with lim £,=« and such that the sequence {x(z,)} is bounded. Thus, for any limit
point & of {x(z,)}, we have (&, &) € 2. The point («, §) is obviously a limit point of
the graph G(x|Dom™" x; P,) and moreover does not belong to it. Therefore, by the
previous theorem, we always have («, £) € 022, which contradicts to the fact that 2 is
open.

The next theorem is a very useful result. In the case where the initial value
problem (E)-(C) has a unique solution, this theorem reduces to the well-known theorem
concerning, the continuous dependence of solutions on the initial values or ‘“‘small
perturbations” of the equation.

Theorem 1.3. Let 2 be open and let {f.} be a sequence in the set Car,,, () such
that

lim f sup | £t X)—f(t, %)| dt=0

Sfor every compact restangle IX K. Moreover, let {P,)} be a sequence in 2 with
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lim P,=P,. Suppose that, for any v € N, the function x, is a solution of the initial value
problem

x/ :f;(t, x)’ x(tv) = Su’ P» = (tv3 Sv)’
Then, there exist a solution x € X(P,) and a subsequence {x,} of {x,} such that
lim x,, = x uniformly on compact subintervals of Dom x,

that is, for any compact subinterval I of Dom x
1) I&Dom x,, for all large v € N,
i) lim x,, =x uniformly on I.

The proof of this theorem is omitted, since it can be carried out by similar argu-
ments with those in [4, p. 14].

§2. Kneser’s type properties of solutions

In this section we study topological and other properties of the set X(P,) of the
solutions of the initial value problem (E)-(C). The fundamental Theorems 2.1 and
2.3 below have been proved (cf. [8], [11], [12]), for the general Volterra integral equation

x(t):go(t)—l—j: g(t, 5, x(s))ds,  te]0, c]

under general conditions on the function g like the Caratheodory’s conditions. In
the special case where

@(t):xo and g(ta Sa .X') :f(ss X), (t: Sa x) € [05 c]z >< Cn
these conditions are reduced to
fe Car,, (2), where 2=[0, c]x C™".

Hence, Theorems 2.1 and 2.3 can be stated as corollaries of the main results of the
papers mentioned above.

Theorem 2.1.  If the initial value problem (E)-(C) has a solution, i.e. ¥(P,)=+0,
then for any r >0 such that [t,, t,+r]=SDom X(P,), the set ¥([t,, t,+r]; P,) is a con-
tinuum in the space C([t,, t,+r], C™).

Corollary 2.1. I X(P,) 0 and every solution x e ¥(P,) is defined at some point
t=1, ie., i e Dom X(P,), then the cross-section

X(f; P)={x(?): x ¢ Z(P,)}

is a continuum in C".
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As an application of the previous theorem, we give a proof of the following
density-convergence theorem. '

Theorem 2.2. If, for every P e £2, the set X(P,) contains more than one solution
then, for any solution x € X(P,) and any compact interval IZDom x, there exists a
sequence {x,} in X(P,) with

IS Dom x, and x,#x on I for every vy e N
and such that
lim x,=Xx uniformly on I.

Proof. Let xe X(P,). We consider a propositional function P defined on
Dom x by:

P(f): There exists a sequence {x,} in the space
X([t,, 1]; P,) with x,s=x on [t,, f] forallye N
and lim x,=x uniformly on [z, 7].

If t e Dom* X (P,) then, by Theorem 2.1, the set X([¢,, ¢]; P,) is a continuum in
C([t,, ], C™). On the other hand, every point of a connected set with more than one
elements, like X([#,, t]; P,), is a limit point of this set. Thus, for any 7 e Dom* X(P,),
P(?) is true.

Let t*=sup {{>1,: P(f)}. We suppose that t* ¢ Dom x, thus G(x| [z, t*]; P)<
£°. Since the graph G(x|[t,, t*]; P,) is a compact subset of £2°, by Remark 1.1, there
exists @ § >0 such that

[7, {4+ 26]= Dom* %(P) for any P=(7, x(1)) € G(x|[t,, t*]; P,).

We choose a 7 e [t*—d,t*). Then there exists a sequence {£,} in X([7, 7+25]; P) such
that

X,#x on [f, i+ 26] for every v € N and

lim £, = x uniformly on [7, 74 24].
For every, v e N, we consider the function x, defined by

x,(t)= {x(t)a {oétéﬁt
x,(1), I<t<r1+26.

The sequence {x,} in the space X([t,, {4 23]; P,) satisfies:

x,5 x on the interval [z,, 7+ 20] for every v € N,

lim x,= x uniformly on [#,, 7+ 24].
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Thus the proposition P(7+20) is true. But, by the definition of ¢#*, this is a contra-
diction, since t*<¢+25. Hence we have #*=sup Dom x.

Theorem 2.3. Let A be a continuum in 2 such that X(P)=+W for any Pe A. If all
solutions x € X(A) are defined (at least) on some interval [a, Bl, then the set X([«, §], A)
is a continuum in the space C([x, 5], C™).

Corollary 2.2. Let A be a continuum in 2 with priA=/{t}. If for every point
(t, &) e A
[ty, 2,4+ 0] X {x e C*: |x—E&|ZD} S,

where 0 and b are positive numbers, then there exists a r>0 such that every solution
x € X(A) is defined (at least) on the interval [¢t,, t,+r]. Moreover, for any such r, the
set X([t,, t,+r]; A) is a continuum in C([t,, t,+r]; C),

Proof. The assumptions of the existence theorem of Caratheodory are satisfied
for any point of 4 and so, by the Remark 1.1, there exists a r>0 with

[t,, t,-+r]=Dom x for every x € X(A4).

Furthermore, by the previous theorem, for any such r the set X([¢, t,+r]; 4) is a
continuum in the space C([¢,, t,+r], C").

In the following, we are going to study the case where
R=[t,, + o)X C"
In this case the intersection
Dom X(P,))= N {Dom x: x € X(Py)}

is a right open interval, i.e. Dom X(P,)=[t,, @) for some «. If «= 4 oo, then of
course all solutions in X(P,) have the interval [¢,, + o0) as common domain of defini-
tion and the study of topological properties of X(P,) is included in the results which
has been already given. So, in the following, we always suppose that o< + oo.

We remark, now, that there exists a solution x € X(P,) such that

Dom x=[t,«) and lim |x(¢)|=+ oo.
t—a

Indeed, if we suppose that « € Dom X(P,), then, by Corollary 2.1, X¥(«; P,) is a con-
tinuum in C*. Thus, by the previous corollary, there exists a » >0 such that

[t,, a+r]=Dom x for every x € X(P) S X(¥%(«; P,))

which is obviously a contradiction. Therefore, by Corollary 1.1, for some solution
x € X(P,) with Dom x=[,, «), we have



32 P. K. PALAMIDES
lim |x(2)|= + oo.
t—a

Our purpose, in the following is to study the topological structure of the two sets

Xp(P)={x e X(Py)): a € Dom x}
X (Py)={x e X(Py): lim |x(¢)|= + oo}

and especially of the first set X;(P,). These sets constitute a partition of X(P,), i.e.
X.(PY)UZEp(P)=%(P) and X.(P)NE(Py)=0

and moreover X_(P,) is always nonvoid.
The given results are new even in the particular case where the function f is

continuous.

Definition 2.1. A4 subset @ of the space C([t,, o), C™) is said to be absolutely equi-
convergent to -+ oo at the point « if, and only if,

(VA>0)(3e >0)(vp € D) (vt e [a—e, al)| (2)|>h.

Theorem 2.4. If Q=[t,, + o)X C" and Dom X(Py)=[t,, ), then:

1) The set X_(P,) is absolutely equiconvergent to + oo at the point c.

ii) The set X_(P,) is a compact subset of the space C([t,, @), C") and thus, for
every t € [t,, @), the set

X.(1; Po)z{x(f): x € X.(Py)}
is d compact subset in C".

Proof. Suppose that the set X_(P,) is not absolutely equiconvergent to + oo at
the point «. Then there exist a sequence {z,} of points of R, a sequence {x,} of solu-
tions of ¥..(P,) and a positive number / such that

limt,=« and Ix,(t,)lgﬁ for any v € V.

By the Bolzano-Weierstrass theorem, we can assume, without loss of generality, that
the sequence {x,(z,)} is convergent. So, if we put

P:(CY, llm xv(tv)) and Py:(tw xv(tv))a y= 19 2) st
then
IimP,=P and x,e X(P)NXP), v=1,2,.--.

Thus, by Theorem 1.3, there exist a solution x € ¥(P), a subsequence {x,,} of {x,} and
a positive number ¢ such that



Kneser’s Type Properties for Caratheodory 33

lim x,,=x uniformly on [¢—d, «].
Hence, we must have

a € Dom x,, for all large v e N

which contradicts the fact that x,, ¢ X_.(P,) for every v € V. :
ii) Let {x,} be a sequence in X.(P,). By Theorem 1.3, there exist a solution

x € X(P,) and a subsequence {x, } of {x,} such that
lim x,,=x uniformly on compact subsets of Dom x.

Obviously, [t,, )& Dom x. If « € Dom x, then we apply Theorem 1.3 to obtain « €
Dom x,, for all large v € V. This is a contradiction, since x,, € X..(P,) for every o €
N. Thus « ¢ Dom x, i.e. x € X_.(P,).

We come back now to the set X(P,). We need the following lemma.
Lemma 2.1. If H is a compact subset of X (a; P,), then the set
X([t, a]; P) N X([4, a]; H)
is a compact subset of the space C([t,, a}, C™).

Proof. Let {x,} be a sequence in X([t,, «]; P) N X({t,, «]; H) and let {={«)} be
the corresponding sequence in H. Since H is compact, by restricting our considera-
tion to a suitable subsequence, we may suppose that the sequence {x,(«)} converges,
that is

lim x,(a)=¢, e H.

By Theorem 1.3, there exist a subsequence {x,,} of {x,}, a solution y ¢ X(H) and
a positive number § with §<<a — ¢, such that y(«)=¢ and

lim x,, =y uniformly on [«¢—3,«].

On the other hand, every solution x € X(P,) is defined on the interval [t,, « —d] and
moreover X([t,, «—d]; P) is a continuum in the space C([t,, «—d],C*). Hence,
without loss of generality, we may suppose that there exists a solution z e ¥(P,) such
that

lim x,,=z wuniformly on [¢, «—94].
In particular, at the point t=a—¢§ we have
Z(e—d)=1im x, (¢ — 8)=y(a— ).

Therefore, the limit function x, which is defined by
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x(t)={z(t)’ LtZa—0
y(t)a C(—‘aéféa,

is an element of the set X([z,, «]; P,) N X([t,, a]; H).

Theorem 2.5 below is the main result of this paper. For the sake of brevity, we
introduce some notations. If A and 7 is an interval, we put

X(Py, A)=X(Py) N X(A),
X(; Py, A)={x|1: x € X(P,, A)}.

In particular, if I= {oc}, we denote by
X(a; Py, A) theset X({a}; Py, A)
while, if 4={P}, by
X(P,, P) and X(I; P,, P) the sets X(P,, {P}) and X(I; P,, {P}) respectively.
Also, we define the graph G(@) of a set of functions @ by
G(@)=U{G(p): p e D}.

Theorem 2.5. If the set X («; P,) is not empty, then it is not a bounded subset of
C™ and moreover it has not isolated points, i.e.

Xpla; Po)=[Xp(a; Py

Proof. We suppose that the set X («; P,) is bounded. Since it is obviously
closed, it is also compact. Thus, by the previous lemma, the set X,([z,, «]; P,) is
compact and hence it is a bounded subset of the space C([¢, «], C*). Thus, there
exists a positive number % such that

(1) (vx & ({10, &5 PNV € [1, a]) | X(2)| <A

On the other hand, by Theorem 2.4 take it out, for every ¢ ¢ [t,, @), the set X_.([z,, t];
Py) is also "a compact subset of C([z,, ¢]; C") and moreover there exists an e>0 such
that

(Vx € X(PONV! € [x—e, @) |x(1)| 2 2A.
Thus, by (1), for every 7 € [x—e, a), we have
Xl PY)NZX.(F; PO):Q and X.(f; P) UX..(i; P)=X({; Py).

This is a contradiction, since the sets X,(7; P,) and ¥X_(7; P,) are clearly compact and
nonvoid and the set X(7; P,) is a continuum.



Kneser’s Type Properties for Caratheodory 35
To obtain X {(a; P))=[%X(; P,)]® we consider a point & € X («; Py). Itisenough
to prove the existence of a sequence {£,} in X («; Py) such that
limé&,=¢& and &,#& foreveryve N.
We suppose that this fails to be true. Then there exists a positive number ¢ such that
(2) [x(a)—&|=¢ for every x e X (P,)\X(P)

where P=(«, £). Lemma 2.1 ensures that the set X([#, «]; P,, P) is a compact subset
of the space C([¢,, «], C™). Thus, the graph G(X([#,, «]; P,, P)) is also a compact sub-
set of 2. Therefore, by Remark 1.1, there exists a §,>0 such that all solutions x €
%(Q), 0=(z,n) with Q e G(X([¢,, «]; P,, P)) are defined on the interval [r,z+0d,]. In
particular, if Q € G(X([a— é,, a]; P,, P)), then it is clear that « € Dom X(Q).

Let now {x € C": |x|<h} be a neighborhood of the set G(X([#, «]; P, P)) that is

(3) |x(t)|<h for every ¢ e [t,, «] and every x e X(P,, P).
On the other hand, by virtue of Theorem 2.4, there exists a §,>>0 such that
[x(2)|>2h for every t € [—d,, ) and every x e X_(P,).
Thus, if §=min {J,, 4}, then, by (3), we have
(4) X.(t; PN X(t; P, P)=0 for every t e [@— 4, ).
We consider now a point 7 € [x— 6, «). Then the set
X([to, 71; PO\ X([, 715 Po, P)

is not compact. In fact, in the opposite case this set and the compact set X([#,, 7]; P, P)
constitute a partition of the continuum X([z,, 7]; P,). This fact is of course a contra-
diction. So, the set X([t,, 7]; P)\X([#, 7]; Py, P) has a limit point in X([#, 7]; Py, P),
i.e. there exist a sequence {x,} in X([t,, 7]; P,)\X([#,, 7]; Py, P) and a solution x ¢ X([%,
f]; P,, P) such that

lim x,=x uniformly on [#, 7]

Furthermore the set X_([#,, 7]; P,) contains at most a finite number of the terms
of the sequence {x,}. This is true because of the fact that the set X..([#, 7]; P,) is
compact and x ¢ X..([¢,, 7]; P,), by virtue of (4). Therefore we can assume, without
loss of generality, that x, € X,.([¢,, ]; Po)\X([t,, ]; P,, P) for every v € N, which means
that

(5) x(@)£E for every v € N.
Finally, if
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(G, x(H)=PFP and P,=@ x,(), v=1,2,---

then we have lim P,=P.

By virtue of Theorem 1.3, there exist a subsequence {x,,} of {x,} and a solution
X € X(P) such that

lim x,,=% uniformly on [7, «].

Moreover, we have £(«)=¢, since otherwise the continuum X(«; P) would con-
nect the point & with the set X («; Py)\{&}. This obviously contradicts (2). Thus
lim x, (a¢)=¢& which, in view of (5), also contradicts (2).

Example. We consider the initial value problem
(E) X =X1X,, Xy=a/X; Xy=a/X; X, =XiX
<) (x:(0), x(0), x,(0), x,(0))=(1, 0, 0, 1)=P,.

It is easy to verify that the set of solutions X(P,) consists of the two-parameter
families

(1,0,0, 1), 0 t<Asy
xl,u(t): (@x(t)a Y1), 0, 1), ASt<<p=2+ ﬁ/ﬁ
(@10), YD), ¥ u(0), 0(0),  p=t<a4 V12
(1,0, 0, 1), 0=r<pu=2
Yu(£)=4(1, 0, 4 ,(2), ¢.(2)), p<t<a<p+ V12
(901(1)3 ¥ (1), ‘py(t)a Soy(t))’ ASt<pu+ W

where for any v e [0, + oo]

12

sﬂy(t):——-lz_(t_p)g

,0< 1<+ ¥/12 and ()= (Z_4”)2 ,teR.

If we set
X, (Po)=1{x,,: 0SA=<p<2+ Y12} and ¥, (P)={y.:0<p<i<p+ ¥12},
then we obviously have
X (P)=X,,(P) U ,:(Py)
and
X p(Po)=[%,,(Po) — Lo, (PYI U [ s(Po) — ¥ o P)]-

Consequently, the set X(cc; P,) is the union of two disjoint and connected sub-
sets in R* and the set ¥_(P,) is a compact subset of C([0, ¥12), R).
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