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Local Theory of Fuchsian Systems with Certain
Discrete Monodromy Groups III
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§0. Introduction and preliminary

This is a continuation of the papers [17] and [18] with the same title. Let D be
the domain in C?:

D={(z,u) € C*|Im z—|uf>0}.

The domain D can be regarded as a domain of the complex projective plane P*(C)
Uy

by the natural embedding of C? into P*(C). If v= [’vz} is a homogeneous coordi-
(£

nate of P%C) related to (z, ) by z=v,/v;, u=72,/v; and if

0 0 i
H=}] 0 -2 0},
—i 0 O

then the domain is expressible as
D={v e PX(C)|v*Hv >0},

where v* is the transpose of the complex conjugate of . We denote by D and 6D
the closure and the boundary of D in P*C) respectively. Then D meets the line at

1
infinity v,=0 at the unique point P= {0] on 9D. A complex projective line passing
0

through P is given, in terms of (z, u), by
u=u,

where u, is a constant.
The complex analytic automorphism group Aut (D) of D is identified with the
guotient group of the subgroup of GL(3, C):

{Xe GL(3, C)|X*HX=kH for some k>0}
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by the multiplicative group C* of C. For the sake of simplicity we express an
element of Aut (D) by a suitable matrix belonging to the corresponding rest class.
Under this convention, an element X of Aut (D) keeps the point P fixed in a geodesic
sense (for the definition, see [17]) if and only if X is of the form

1 2iga r+ilaf
[war]=|0 ¢  a
0 0 1

where p.b e C,|p|=1 and r e R ([17]; Proposition 3.1). We denote by G the sub-
group of Aut (D) consisting of elements X which leave P fixed.

In our preceding paper [17], we treated a special kind of discrete subgroup of
G which is generated by two unitary reflections (Definition 1.8) of order 4. In this
paper, we list up all the discrete subgroups {I'} of G of locally finite volume (Theo-
rem 1.6) and find all the groups {/'}C{/'} which are generated by unitary reflec-
tions (Theorem 1.9). Next, for each, /" € {I'}, we construct the nonsingular model
of the quotientspace added by the point P: D/I"U{P} (Theorem 2.1, 3.1, 4.1) and
pick up all the subgroups belonging to {/'}; such that the space D/I'U{P} is non-
singular (Corollary 2.4, 3.4, 4.4). Combining Corollary 2.4, 3.4, 4.4 and Theorem
1.9, we have the following theorem.

Theorem 0.1.” Let I" be a discrete subgroup of G of locally finite volume. Then
D/Ir U {P} is nonsingular if and only if I' is generated by unitary reflections.

Then, for each I" ¢ {I'}/, we choose a system of parameters x, y around P of
the space D/I" U {P} so that the mapping D—D/I" U {P} is expressible globally by the
use of well known functions (Proposition 2.7, 4.8). Finally, we construct a com-
pletely integrable system of differential equations (E;), for each I" e {I'}, of the form

ZEZ =pn(x, y) o¢ +p11(x y) —|—p11(x »)§é
e
———=—pu(X, y) —pu(x y) +p12(x »)é
0xay

0%

e =pia(x :y) +p22(X,y)—~ +pox, ¥)E

with regular singularity at the origin such that the group of linear fractional
transformations derived from the local monodromy of (E) (which is called the
projective monodromy group of (E;)) coincides with I" (Theorem 2.8, 3.6, 4.9). We
also prove that the system (E;) is Fuchsian, i.e., it is defined in P*(C) and regular
singular at every point. The monodromy representation of the system (E;) is given

' Compare this theorem with [18]; Corollary 1.2.
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as follows. Let Z, be the singular locus of the system (E;) in the finite plane C? in
P*(C) and [/ be a line in C? such that / intersects normally with Z,. and that the
intersection number of / and Z, is minimal. The number of {g,}:=I/N Z, which is
the minimal degree of the defining equation of Z,, is equal to the number of
generating unitary reflections {A;} of I" given in Theorem 1.9. Then, by a suitable
permutation of g, if necessary, we can find the roops «;, around ¢, in / (which form
a system of generators of the fundamental group z,(C*— Z) of C*—Z;) so that the
monodromy representation z,(C*—Z)—I[" may be given by a;,—h,.

In concluding this section, we shall briefly review the procedure of calculating
the coeflicients of (E;). Since the system (E,) is assumed to be completely integr-
able, we can express all the coefficients of (E,) by the four coefficients p},, p?, pi, and
3, as follows:

op, op
ph=—Pu _ OPn 4 a(ply—2ptpt,

ox oy
op: opl
ph= - A phaph— Piap
opl opl
D= — 5”;2 —%w(pzzy—zphp;z.

The four coefficients of the system (E,) are calculated, as in [17], by the Schwarzian
derivatives S¢;(z, u; x, y) of (z, u) with respect to the variables (x, y):

oz 0x | Fu ox 1 3
ox® 0z 0x® ou & Ox
"z 9y | ou 3y 1 3%
dy* 9z  3y* ou & ady
0’z Qc__*_ du ox
dy* 9z 8y* ou’
o’z dy | du dy

ox? o0z 0x® odu

Pulx, »)=Su(z, u; x, y):=

DPo(%, )=8%(z, u; x,y):=

p%z(xa y)zSéZ(Zﬂ u; x, y)=

Pa(x, =8z, u; x,y):=

where &,={det ((z, u)/d(x, y))}"'* and (x,y) is the local coordinate of the space
D/I" U{P} around P obtained above.
As for the notation and terminology, we follow [17] and [18].

Table of contents

8 0. Introduction and preliminary.
8 1. Discrete subgroups of G of locally finite volume.
§ 2. Subgroups of type Il.
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§ 3. Subgroups of type IV.
§4. Subgroups of type III and type VI.

§1 Discrete subgroups of G of locally finite volume

Definition (c.f. [17], §1). A subgroup I" of G is said to be of locally finite
volume (at P) if and only if I"D(N)/I" has finite volume (with respect to the Aut (D)-
invariant measure of D) for sufficiently large N >0, where

D(N)={(z,u) e C}|Im z—|u>N}CD.

In this section, we shall study discrete subgroups of locally finite volume of
G={[y,a,r]}. Notice that C={[1, 0, r]} is the center of G and

[#h a;, r1) [/Jz: ay, 1] = [#1#2, a,+ (na,, ri+r,—21Im #ﬁlaz]-

Let G, be the normal subgroup of G consisting of all the elements of the form

[a,r]:=[1,a,r].
Then we have the following proposition due to Hemperly [4].

Proposition 1.1.

(i) If I is a discrete subgroup of G of locally finite volume, then I')=1"N G,
is also of locally finite volume and the index [I": I',] is finite.

(ii) For each discrete subgroup I', of G, of locally finite volume, there exist a
lattice L (=1I",/I",N C) of a complex plane, a positive number

g:= min |r |
[0,71eI"

and a mapping
r(-): L—>R/gZ

such that [a, r] is an element of I', if and only if a € L and
r=r(a) modgq.

Since the lattice L, the positive number g and the mapping r(-) characterize
the group I, we shall call the triple {L, g, r(-)} the characteristic of the group I,.

First we shall study subgroups of G,. Let I', be the subgroup of G; with
characteristic {L, ¢, r (-)}. Put

W= @ /02,

D,={w e C|0<|w|<e 112} x {u},
D,={w e Cl0<|w|<e ™4} x {u}
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and for pe L,

2Zi(2iﬁu—kr(v)-kilvfl

g(u, ) =exp

For two points (w,u) e D, and (W, u+7) e D,,,, we define the equivalence (w, u)
N(W,’ u+77) by

pe L, w =g(u, nw

and denote by [w, u] the rest class of (w, u) with respect to the equivalence relation
~. The following proposition is also due to Hemperly [4].

Proposition 1.2. The quotient space D|I"; is biholomorphically equivalent to
(Uwee Du)|~ and the nonsingular model D[I'; of D/I'\U{P} is identified with
(Unee D)) ~=(Uypece D)/~ UE, where E is the elliptic curve {[0, u]}=C]/L.

Corollary 1.3 ([4]; Lemma 2.1). Let &(I")) be the line bundle over E with the

transition functions {g(u, n)|n € L}. Then D|I'| is identified with a tublar neighborhood
of the zero section (= E) of the line bundle §(I',).

Let L=2Zy,+Zy, Im 7%,9,>0). The equality

L7, 0] [772a 0] [771: ] —1[772’ 0]—1 = [0’ —41Im ﬁlﬂz]

implies that

pi= 4 Im 7,7,
q

is a positive integer. Note that p depends only on L and ¢ and is independent of the
choice of Z-basis, 7,, », of L.

Proposition 1.4. Let I', be a subgroup of G, with characteristic {L, q, r(-)} and
g(u) be a nonzero section of the line bundle £~'(I")). Then

(i) the degree of g(u) is equal to p,

(i)  the self-intersection number E? of E in D|I'; is equal to —p,

() i {a,}, {b,} be the zeros and poles of g(u) respectively in the fundamental
paralleogram of L=Zy,+ Zy,,

5 a3 by =Lt )+ L8 T mod L.
7 7 2 q q

Lemma 1.5. Let 9(u) be a theta function with respect to the lattice L= Zy,+ Zy,
which satisfies



6 M. YosHmA and S. HATTORI

Hu+n)=a(p)e @@+ 1/D.9(y) for every pe L.
Then
() d=#a}—#{b)y=-Hon—hn),

1
27i

where {a;} and {b;} are the zeros and poles of 9I(u) respectively in the fundamental
paralleogram of L.

i 2a—2 bjE%(ermH (7, log a(y,)—n, log a(y,)) mod L,

Proof. (i) is known (e.g. see [12]). To prove (ii), we have only to calculate
the following:

o~

% Zit-y,

4 4

V4 7

=L 5[ Ty,

2ri i=1dy I(u)

Since the relation

9 (u+7) 9(u)
PUED — i)+
Su+7) P9

implies

I u () du= —L (u—i—;yz)-Mdu

H(u) Hu-+ 7]2)
_ _ ¥ (1) du — J () d
= —7h(n.) f G OL kTl M el BT
if we notice that
__.‘9,(")51 =1 -_—“9(771) =rh(n)- 1~ +log a mod 2xi
" 9 u=log 90) =nh(y,) 5 Tlog (10 i,
I is easily calculated. Q.E.D.

Proof of Proposition 1.4. Let g(u) be a nonzero section of £7%(";)). Then by
the definition of &£(")), g(u) satisfies

gu+n)=g(u,n)'gu)  foreverype L.
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Since

-1__ ,—(2x% ( 47 +7/2
g(u’ 77) — g~ @ri/Q)r(n) pr(47/Q) (u+7 ),

if we put a(y)=e @07, h(y;):ﬂ and 9(u)=g(u), we can apply Lemma 1.5.
q

Hence

d— 1 < 47, 7 47, 771)2 41m 7,7, _

2\ g q

which proves (i). (i) yields (i), because, £(/";) is the normal bundle of E in D/I,
(Corollary 1.3) and E? is equal to the degree of a nonzero section of £(/";). The
assertion (ii) is an immediate consequence of Lemma 1.5, (ii). Q.E.D.

The mapping r(-) is completely determined by the values 7(7,) and r(z,), because,
the equality

[a, r(a)]le, r(@)]=]a+da, r(a)+r(a)—21Imaa’]
implies
r(at+ad)=r(@+r@)+2Imaa’ modg
and so
r(ny,+my)=nr(p)+mr(p,)+2nm Im 7,7, mod q.
For the element /(«) € Aut (D) of the form

ol
I(a): (04 . OZECX,

we have
I(@)[a, r /[ a)=[aa,|af r].

This proves that if I'; has the characteristic {L, g, 7(-)}, then the characteristic of
I ()7 is {aL,|al g, |af r(-)}, and the number p leaves invariant under this
operation. Thus every discrete subgroup /', of G, of locally finite volume is conju-
gate (in Aut (D)) to the group with characteristic {L=Z+41<Z, g, r(-)} for some
z(Im z>0), which we shall denote by I'\(z; p, ry, r.) where r,=r(1), r.=r(z) mod gq
and p=41Im z/q.

Next, we shall study subgroups of G.
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Theorem 1.6. Every discrete subgroup of G of locally finite volume which is not
contained in G, is conjugate in Aut (D) to one of the following groups:

2
Type II FII(T;pa €1, €5 e): :ZI Fl(f;pﬂ ¥y l‘,,)[—l, Oa r]v

4Im ¢
where ry=29 =59 45— 1 .
=5 2 1=

and ¢, ¢,,e=0,1 mod 2.

4
Type IV I'w(p,e’;9)=2, I'\(i; p, v/, r)[i, 0, r]
v=1

/7
where r’=—521, r=%, q= 4 and ¢ =0,1 mod2,=0,1,2,3 mod4.
D

Type I Fin(p; =33 4G 2, 13 3, =1/ I 0, 7T

where { = e**%/®, rz—%qﬁ, q=£ and e=0,1,2 mod 3.
p

6
Type VI I'y(p;e)= Zl I'(&p, v 3,v3)L0,r]
where r=%, q:-g“/—T— and e=0,1,---,5 mod6.
p

Proof. Let I be a discrete subgroup of G of locally finite volume and put
I''=G,NI'. If I'y1T, there exists an element [y, b,r]| € I'—1I"; such that I" has
the following coset decomposition:

2l b, r], pr=1

for some n>1. Indeed, we have only to choose an element of I” whose order in
I'/I'; is maximal. Since we have

[x, 0][e b, r1[x, 0]
=g b—|—(1—#)x, r—2Im ()_Cb—/lb—x_/«llxlz)]’

if we take conjugate of I by the element [x, 0] = [Ll’ O], we can assume that

p—
b=0. Moreover, taking conjugate by a suitable element I(«), we can also assume
that the characteristic of I"; is {L=Z+ Zz, q, r(-)}. On the other hand, the equality

[0, 7]La, r'1[1 0, r17'[a, r'] 7' =[(¢—Da, 2|af Im g],  [a,r']el
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yields uLC L. This shows that the parameters n, y, ¢ in the expression of I':

;l Fl(r;p, rl, r‘r)[ﬂ) O’ r]u

have four possibilities:

(1) n=2, uy=—1 for arbitrary ,
(ii) n=4, py=r=i,
(i) n=3, pu=0C =,

and
(iv) n=6, p=c=¢_.

Since the above expression represents the group I” with the normal subgroup I,
we must have

[0, r1[a, r@]1[s 0, r1"'=[pa, r@] e I, for each [a,r(a)] € I',

and
[0, r]"=[0,nr] eI,

Hence we have r(pa)=r(a) and nr=0 mod q. The first equality implies, for each
cases, the followings:

(i) 2r, 2r,=0 modg.
(ii) r,=r,and 2r,=0 mod gq.
(iv) rn=r,=+3 modgq. In fact, we have r()=r()=r(¢? and

r)=r(C—1)
=r(@)—r(D)+2Im¢e.

(ii)) rn=—r.=1/4¥/ 3 modg, because we have r()=r()=rH=—rQ).
These complete the proof. Q.E.D.

In the groups which we have list upped in Theorem 1.6, there are several pairs
which are conjugate to each other.

Proposition 1.7. (i) The group I'y(z; p, &, 6,5 €) is conjugate to I'n(—1/z; p,
&, 65 6), It P, 61+ D, &; e+ey) and I'y(z; p, ey, &-+p; e+¢).

(i) The group I'+y(p,€; €) is conjugate to I'y(p, &'+ p; e+2¢'+3p). Here, the
additions in (i) are mod 2, and the additions for ¢’ and ¢ in (ii) are mod 2 and mod 4,
respectively.

Proof. (i) By definition, we have
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I'iy(z;p, e 855€)

_% {[n+mt’ 2Im <
v=1

(nel+mez+pnm—|—2l)] sn,m,l e Z}[—l, 0, 21Im e]v.
D

The equalities

I(— 1/1)[n+mf, 2Im ¢z (nel+m52+pnm+2l)]l(— 1)
= [__1_n—m, 211211 T (nel—l—mez+pzzm+21)]
T |zf'p

=[m+ (=L ) 2D (e ey p(—
T p
o+ 201+ e+ pmn) |

and

I(— 1/1)[— 1,0, 21;’ ¢ e]l(— 1)1 = [— 1,0, ""Im;Je]

prove the conjugacy of I'y(z; p, &, &3 ¢) and ' ((—1/z; p, &, &5 ¢). The formulae

[x,0][a, r][x,0] '=]a,r—4 Im Xa],
[x, 01 0, r1x, 0] 7' =L, (1 —p)x, r+2 Im g | x*]

lead to

2Im~

[£/2,0] [n+mf, (e, + me, + pnm+21)] [</2,0]"

2Imz

= [n+mr, (n(e,+p)+me, +pnfn+2l)],

and

[z/2,01[—1,0, 21m? s] [2/2,0]"
P

. 2Imf(ez+2l)][—1,o, 2ImT(E—ez+21)]
I p 2

which yield the conjugacy of I'i(z;p, &1, &;¢) and I'y(z; p, e,+p, &5, 6 +6,). If we
put x= —1/2 instead of x=1¢/2 in the above formulae, we can analogously prove the
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conjugacy of I'y(z; p, e, &; ¢) and I'y(z; p, €1, &,+p; e+e¢)).
(i) Recall that

I'y(p, e )= i} {[n—l—mi, 3((n+m)e’+pnm+2l)] sn,m,le Z} [i, 0, i]».
y=1 p p

Making use of the above formulae by putting x= l;—l, we have,

[ i—;l , 0] [n—l—mi, %-((n—{-m)s’—i—pnm—i—Zl)][ i—21 , O]—1
= [+ %«n+m)(e'+p> +prm-+21)|

and

[5ollso ]S o]
2 p 2
[i,i,—e——i—l]

P

[l, £($/+p+21)] [l, O, _l.(s_p_ze/_‘l_l)]
p p

I

which show that I'iy(p, ¢’; ¢) and I'y(p, &’ +p; e—p—2¢’) are conjugate to each other.
Q.E.D.

Definition 1.8. An element of G is called a unitary reflection with center u=u,
if it has the form

h(ﬂ’ u0)= [#’ uO(l _/'t)s 2 |u0 IZ Im ‘Ll],

where p is a root of unity.
Notice that A(y, u,) keeps the line {u=u,} passing through P fixed, and that the
order of h(y, u,) is equal to the order of g in C*. The following formula

(1.1) h(ﬂl, ul)h(/«% uz)h({lb u) = h(ﬂb U+ #1(”2 —u,))

is frequently used later. We are interested in the subgroups of G generated by
unitary reflections.

Theorem 1.9. Every discrete subgroup of G of locally finite volume which is
generated by unitary reflections is conjugate in Aut (D) to one of the following groups:
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Type Il I'u(z; 1,0,0; 0)=<A(—1,0), (=1, 1/2), h(—1,7/D)
FH(T?2’030§0)=<h(—1,0),h(—1,1/2),h(—1,z-/2),h(——1, 1J2r)>

Type IV I'iy(1,0; 0)=<A(i, 0), h(—1, 1/2)>
T, 050)=(hG, 0), h(—1,1/2), h(—l 1+i >>

T2, 1;0)=(1G: 0, A1, 1))

Ies(4,0; 00=(hG,0), (i, 1), (-1, 1))
Type I a1 0)=(h@ 0), (& 1 15))

Fuso- 6.0, ) e 119)

Type VI I'y(1; 0)=<A(C, 0), h(C, 1))
I(132=(h(=1,0), o(&% 115). (2, 1)

Tt 3)=(h(—1, ), M= 1,0, W&, 0))
Tt 9=(h(—1, 1) 1, 1F2))
T2 0=(he, 0, h(—1, )

rsa=( o1 1) )
T(3;0=(h(e, 0), (&, 12 ))
T'u(3; 3)=<h(— 1, %) he, 0), h(cz, 147 >>

P63 0= (G, 0) A —1, ). (2, 1EE)).

Remark 1.10. It is the group I'v(2, 1;0) that we treated in [17].

Remark 1.11. If '—~>I"" means that I is 2 normal subgroup of I' of index

v, then we have the following relations.



Local Theory of Fuchsian Systems 13

I'y(4,0;0)
2 2
I'y(;2,0,0; 0)
2 I'n(2,1;0) I'(2,0;0)
Pu(T; 190’0;0) 2 \
I'i(1,0;0) I'y(i52,0,0;0)
\ /
I'y(i;1,0,0;0)
I'y(6;0)
2 3 2 3
I'y(3;3)
3 3
I'y(1;3)

I'iy(3;0)

3 I'n(¢;2;0,0;0)

I'i(1;0)

I'y(£;1;0,0;0)
It was proved ([17], Proposition 3.3) that the group <&, h,> generated by two
unitary reflections %, and 4, in G of respective orders n, and n, is descrete if and only
if n;|4 (j=1,2) orm|6 (j=1, 2). This gives the following corollary of Theorem 1.9.

Theorem 1.12. Every discrete subgroup of G which is generated by more than
two unitary reflections is of locally finite volume except for the group generated bytwo
unitary reflections of order two, which is unique up to conjugacy.

Proof of Theorem 1.9. Type IL. We find all the unitary reflections, which are
of course of order 2, contained in the group /';(z; p, &, &, ¢). Since

[n—i—mz-, 2Im<¢ (nsl+msz+pnm+21)] [—-1, 0, ZIst]
D
=[——1,n+mr, 2ImT(m-:l-\—;1f152—|—pl1m+z-:—1—21)],
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if we recall that
h(—1,u)=[—1, 2u, 0],

the set R(z; p, ey, &,; €) which consists of all the unitary reflections in I'5;(z; p, €1, &5 €)

Next we study the group (R(z; p, &), ¢,; €) > generated by the elements of R(z; p, e, &, €).
On account of the equality

n,me Z, ne,+me,+pnm-+e=0 mod 2}.

h(_ 15 ul)h(_ l, uz) = [2(u1— u2)7 2 Im a1u2]
and Proposition 1.7, we can conclude that

CR(t;p, e, 65 €)) NGCR(T; e, 8558) ) N C
(={ae C|la,r] e R(z; p, &1, &5 €) N G, for some r € R})
=L (=Z+12)

if and only if I'y(r; p, e, &5 ) is conjugate to I'y(z; p,0,0;0). By the relation
(1, 1) and the expression of the elements of R(z; p, ¢,, ¢,; €) obtained above, we have

(R(z:2p'+1,0,0; 0)>=<h(—1, 0), h(——l, _i_) h(—l, %»

(R(z; 20,0, 0; 0)>=<h(—1,0), h<—1, %) h(—l, %) h(—l, 1‘2”».

Recall that

Iz 1,0,0;0)=<[1,0][z,0], [0, 4 Im <], A(—1,0)>,
Iz 2,0,0; 0)=<[1,01, [z, 0], [0, 2 Im ], A(—1, 0)>

then the equalities
h(—l, %)h(—l, 0)=[1, 0], k(——l, %)h(—l, 0)=Tx, 0],

[z, 01[L, 0][=, 0]*[1, 0]~ =[O, 4 Im 7],
h(—l, “2” )h(—l,O)[r, 0]-'[1,0]~*=[0, 2 Im 7]

prove the assertion.

Type IV. Notice that
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h(i, w)= i, u(1—1), 2 |uf],
[”+m"’ 3(8’<n+m)+pnm+zl>] [’3 0. 'E“]
D P

= [i, n+mi, L(2e'(n—l—m)+2pnm+e+4l)]
P
and
.2, NS E
[n-l—mz, 2 ntm)+ pnm+21)] [z, 0 __]
P p
=[ =1, nrmi, 2+ prm-te+21)|
P

then the sets R,(p,¢’; ) and R,(p,¢’; ¢) which consist of all the unitary reflections
of I'ty(p, ¢’; €) of order 4 and order 2 are given by

{h(ii, n—in+2i(n+m)>

n,me Z,2¢d(n+m)—p(n+m)*+e=0mod 4}

and

n,me Z,&(n+m)+pnm+e=0 mod 2},

()

respectively. Put R(p,’; e)=<{Ry(p,¢; €), Ry(p,€’; ¢)y. By making use of Proposi-
tion 1.7, we can show that

R(p,e';)NG/R(p,e'; )N C=L
if and only if I'iy(p,€’;¢) is conjugate to one of the following five groups:
I'v(4p'+1,0;0), I'y(4p’+2,0;0), I'y(4p'+2,1;0), I'v(4p'+3,0;0), I'v(4p’,0; 0),

and that R(4p’+1,0;0)=R(@4p’+3,0; 0). By the above results and (1, 1) we can
conclude the followings:

R(p'+1, 05 0)=(h(i, 0), h(— %)>
R@p'+2,0;0=(1G; 0) h( %) ( 1, 1‘2”)>,

R@p'+2,1;00=(hG, 0, (i, + 1)),

R(@4p’, 0; O)=<h(i, 0), h(— 1, %) h(i, “2”' )>
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The equality /'v(2, 1; O):<h(i, 0), h(i, 1_2H )> is already proved in [17]. Recall

I'y(1,0; 00=<[1, 0], [1, 0], [0, 4], A, 0)),
I'v(2,0; O)=<[Is 0]5 [i: O]a [07 2]’ h(is 0)>>
FIV(43 0; O):<[19 O], [is 0]’ [09 1]9 h(ia 0)>

Then the equalities
h(-— 1, %)h(i OF=[1,0],

K, O)h(— 1, -;—)h(i, 0)=[i, 0]

[19 0]_1[ia 01[1, 0] [ia O]—lz [0,4],

[i, O]h(—l, %)h(-l, 112”' ):[0, 21,

h(i, 1“2” )h(i, O)h(—l, %):[o, 1

lead to the conclusion.

Type III. Since we have

I'in(p; e)=§]1 {[n—i—mcz, (n+m— 3nm) V3 + 27 l];n, m,le Z}

3
>< [zz’ O) 2/\/_3~ e]»’
3p
[n—}—mCz, (n+m—3nm) V3 + 2/3 l] [C2, 0, 2/3 e]
3 p 3p
= [CZ,nerCZ, (n+m—3nm+~—6—l—+2—s>~——ﬁ ]
p D 3

and
WG, w) =% u(1—9, ¥/ 3 |uf],

the set R(p; ¢) which consists of every unitary reflection in I';;(p, ¢) is given by

{h(C”, Zn;—m + n—;—m Cz);n, meZ, (n—i—m)(nz—}—m—l)p_ezo mod 3}.

If {(R(p; ¢)) denotes the group generated by the elements of R(p,¢), we can prove
that
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CR(p; &) NG /{R(p;e))NC=L

if and only if p=0,1 mod 3 and ¢e=0. By (1, 1) we conclude that

(RGP +1;0=(he, 0, (e, 1EE)),

(R@3p’; 0)>=<h(f;2, 0), h(CZ, 1;%) (CZ C+o )>
On the other hand, we have

ru;0=([1, 22 [o 2] 10203100, 0),

s 0=([1. 47| [ 4T o 23] o)

Thus the following equalities
(CRES ST (eS|
[ (e S o <[ <E )
e | LR B ]=[° 23

(e, M 7)o 2]

yield the desired equalities.

Type VI. Since we have

2ﬁ l];n, m,le Z}[C,O, “g? s]u

/4
:{[Cv,n—i-mCz (n+m nm—i—ﬂ_—}—g’ )x/_?a—];n,m,leZ,u=1,...,6}
/4

I(ps )= {|n-+me

and
hG, wy=[C,u(1—0), v/ 3 |u],

the sets Ry(p; ¢), Ry(p; ) and R,(p; ) which consist of all the unitary reflections of
respective order 6,3 and 2 in I'v(p; ¢) are given by
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{hC*', n+mC?); e=0},

{h(C”, n—|3—m + 2m3——n CZ); (n—l—m)(r;—l—m—l—3) p-+2¢=0mod 3}

and

{h(— 1, ”+2’"C2 );p(n+m—nm)—|—k50 mod 2}

respectively. This shows that
R(p;e)NG/R(p;e)NC=L

if and only if (p;e)=(6p'+1;0), (6p'+2;0), (6p'+3;0), (6p’;0), (6p'+1;5),
6p'+1;2),(6p"+2;4), (6p'+3;3), (6p'+1;3), (6p'+5;0), (6p'+4;0), (6p'+5; 1),
(6p"+5;4), (6p'+4;2), (6p'+5; 3) and (6p’; 3), where R(p; e)=(Ry(p;¢), Rip; o),
R,(p;¢)>. Moreover we have R(6p’+5; 0)=R(6p’+1; 0), R(6p’+4; 0)=R(6p’'+2;
0), R(6p’+5; )=R(6p"+1; 5), R(6p’+5; 4)=R(6p’+1; 2), R(6p’+4; 2)=R(6p"+2;
4), R(6p’+5;3)=R(6p’+1; 3) and R(6p’; 3)=1"11(3,0). The equation (1, 1) leads
to

R(6p"+1; 0)=<A(C, 0), A(C, 1))
R(6p/+2; 0=(h(C, 0), h(— 1, )}

R(6p'+3; 0)=(H(e, 0), H(T =5 )>

R(6p'; 0)=(H(, 0), h( 1;}— ( 1‘)
R(6p'+1; 5)=<h(C2’ ) h( %)
Ry +2; 9= (h(e, EE). H=1,0, 1~ 1, 7))

R(6p’'+3; 3)=<h(Cz, 0), h(CZ, %) h(_ L %)>

R(6p'+1; 3)=<h(§2, 0), h(— 1, %) W(—1, c)>.

On the other hand, we have
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FVI(I; 0):<[1: ﬁ]’ [C29 '\/—?]’ [0’ 2ﬁ]’ h(C, 0)>
I'n(2; 0)=([1, 0], [£’, 0], [O, ‘/—?T]’ h(, 0)>

IaG;0=(IL V3118, v 31 [0, 2V 3] hie. )

T'y(6; 0)=<[1,0], [, 01, [o, ‘7 ] h(, 0)>

(13 9)=(11,¥ 31,18,V 31, 10,2v 31, [6.0, 2vF )
(3 9=(11, V31 16V 31, 10,2731 [6.0, 293 )
@ H=(11,¥ 31,18, 431, [0, V31 |6, 0, 243 )

Ay . 2 J3
a3 9=([1L, V3118 v 3L [0 2v3 ] Je o 22])
P13 H=([1, ¥ 31, [65 31, [0,2V 3L IE,0, V3 1.

The equalities

R, DRE, ORE, DA, 0) ' =[1, 4/ 3],
(B, DAE, 0)YA(E, O)h(C, D=L, v 3],
(1, OAE, Dy=[0,2+/3]

imply I'y;(1; 0)C R(1;0). If we notice that A({, 1) € R(3; 0), these equalities with

(e 0n(e 59)) =0 37]

lead to I'y;(3;0)CR(3;0). We have I'y(2,0)CR(2;0) and I'y(6; 0)C R(6; 0),
since,

W1, 2, 0=11,01, . O — 1, - JH(G, 0 =[% 0],
(h(C, O)h(— 1, %))3: [0, /31,
e e 3) o T

3
On account of the equality

(e 0 (e, D =([1. L] [ V3] o 2v31 o)
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obtained in the proof of type III, taking conjugate by a suitable element, we can
easily show that

(L3116 VFL 0.2V T T e (h(e 8, (e, S,

If we notice that

<h(C2, %) h(ca -—C_';—CZ»CR(I . 5)NR(1; 2)NR2; 9N RG; 3),
then the equalities

e e M oo o 309)

e 59 e S - 23],
h(—l(»h( 5 )ILVF1=10,V 31,
ne o (2 ) v 1=[o, 293,
e ey

yield I'y(1; 5)C R(1;5), I'y1i(1;2)C R(1;2), I'v(2; 4)C R(2;4) and I'y(3; 3)C R(3; 3).
Finally, we have I'y,(1; 3)C R(1; 3), because we have

W1 L) on(—1, me, o=, 37,
[ V3 1@ o — 1 S )@ o~ 1, (1 S )r(—1 L) =10,2431,
[0.2v31h(—1, S (1, 3 )=1e, V31,
W~ 1, 2 )T VT 0=12,0,4/ 31,

This completes the proof of Theorem 1.9.

§2. Subgroup of Type I1 _
In this section, we shall investigate the subgroup of Type II:



Local Theory of Fuchsian Systems 21

2
I'n(z;p, e, 65 )= Z_:lpl(f;l’, ry,r)A”

where A=]—1,0,7]. We shall first study the nonsingular model of the quotient
space D/I'(7; p, e, e5e) U{P}. Let x: M—V be a resolution of a 2-dimentional
analytic space ¥ with a unique singular point P e V. If N=xr"(P) consists of non-
singularly embedded rational curves which intersect transversely and such that no
three intersect at a point, it is customary to represent N by its dual weighted graph
as follows. Let {N,} be the irreducible components of N. These N, are the
vertices of the graph. An edge connecting two vertices N, and N, corresponds to
a point of intersection of N; and N,. Their intersection number is always +1, by
the assumption. To each vertex N, of the graph, we associate the self-intersection
number N;. We shall represent the resolution z: M—V by the weighted graph
thus obtained, which will be called the graph of nonsingular model M of V.

Theorem 2.1. For each I'=1"y,(t; p, &1, &; €), the quotient space D|I" U{P} has
a singular point at most at P and has the nonsingular model S, of which graph is given
by the following table.

F:FII(T;.ps €1, 82; 5) Graph OfS
FII(T;2PI+25 0:0;0) i_([)’—}—l)
I'u(z; 20'+1,0,0;0) e (11
FII(T; 2p,+25 19 0: 0) —2 F "‘l2
FII(T; 2p/+2, 1, 1; 0) —(p,+2)
-2
FII(T;zp/-i_l, 191’0) F
BT
-2 -2
I'u(z;2p'+2,0,0; 1) (e
—2. _
—(p'+3)

Here F denotes the rational curve F=E[{A) and p’ stands for nonnegative integer.
Since every subgroup of Type Il is conjugate to one of the above groups by Proposition
1.7, we omitted the graphs of the remaining groups.

Proof. Since I'y=1I'\(t;p,r;,1,) is a normal subgroup of I, A=[—1,0,r]
operates naturally on D/I"; as follows:
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A: [w, ul—[e** " Pw, —u].

In order to construct S, we shall resolve the singularities of (D/I"))/{A), where {(4)
denotes the cyclic group generated by the operator A. The fixed points of 4 on the
elliptic curve E={[0, u] € D/I"}} are {[0, w,]},-0,1,2,s Where @,=0, ©;=1/2, w,=(1+41)/2
and w;=1/2.

Lemma 2.2. There exist a neighborhood U, of [0,w,] in D/I"; and a local
parameter (s, ¢) around [0, »,] such that A operates on U, as follows:

A: (s, t)u—>(s exp 27ri{L +M}, —t).
q q
Proof. Lett=u—w,;. Since we have
A[w’ t_l_wJ] — [ezn'?:'l'/q‘,v’ —f— w]]

and
g(—i—w,, 20,)=exp 2;”' (20Q@,)(— 1 — ;) +rQo,)+i| 20,2}
=exp ot exp 2xi M,
q
we have only tb put s=w exp 47?]' L, Q.E.D.

Corollary 2.3.

(i) Ifr+rQow,)=0mod g, then U;/{A) is a nonsingular surface parametrized
by (s, t). . ~

() If r+rQw)=q/2 mod g, then U,[{A), with the unique singular point
[0, w,], has a resolution which has the graph 02 consisting of a single curve C. The

nonsingular model of U,[{A) is parametrized by (s/t, t*) and (t[s, s*), and the curve C
is represented by t*=0.

Proof. Easy. Séé for instance [8] and [17]. Q.E.D.
Recall that

r(ay) —0 rQo) _& rQow) _ &

&
2 q q 2’ q 2

and
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rQw) _ r(1+7)
q q

=L (1) +r(0)+2 Tm 7) mod 1
q

:';—(51+52+p) mod 1
and resolve the singularities of (D/I",)/{A4). Then, if we notice that F=E/{A4) is
nonsingularly embedded, we obtain the nonsingular model S of D/I" U {P} stated in
the theorem. It remains to calculate the self-intersection number of F. Let K be the
canonical line bundle of S. By the adjunction formular (see e.g. [7]), we have

F=—_K.F—2,

where K- F is the intersection number of K and F. If g(u) is a section of the line
bundle &-(I",), then w=_g(w)g(—u) (dw/\ du)®* is I'-invariant, i.e., » is a meromor-
phic section of K®2.  Since 2K-F=K®?.F is equal to the degree of the divisor of
o on F, we shall find out zeros and poles of w on F. g(u)g(—u) has p zeros on F by
Proposition 1.4. By Corollary 2.3, we conclude the followings:

(i) If r4+rQw,)=0mod g, then (dw/Adu)®* has a simple pole at [0, w,] € F.
Indeed, we have

(ds A\ dt)® = Tl—(dx/\ &)=,
y

where (x, y)=(s, ¢°) is the local parameter at [0, w,] in S.
(i) If r+rQo,)=q/2mod g, then (dw/Adu)®* is holomorphic and nowhere
vanishing in the neighborhood of [0, w,] € F. In fact, for (x, y)=(s/t, t*), we have

(ds\dt)® = %(dx/\ ).

The completion of the proof is now immediate. Q.E.D.

A nonsingularly embedded rational curve of self-intersection number —1 can
be blow down to a point. Thus we have

Corollary 2.4. For a group I' of type II, D/I" U{P} is nonsingular if and only
if I' is conjugate to I'1(z; 1,0,0;0) or I'1(7;2,0,0; 0) for some .

Remark 2.5. These two groups are generated by unitary reflections and have
the following relation.

Iz 2,0,0; 0)=(I'y(z; 1,0,0; 0), [0, 2 Im 1.
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Next, for I'=1";(z; 1,0, 0; 0), we shall express the natural map D—D/I" U {P}
in terms of coordinates.

Lemma 2.6. The even entire function g(u)=9,(c; u)e'**™%* is a section of the
line bundle £(I'\(z; 1,0, 0)) with zeros only at u=w, mod L, where 94(z;u) is the
even theta function defined by

9y(z; u):= f} exp wi(cn® -+ 2nu).

Proof. By the definition of &, g(u) is a section of £7! if and only if

2
Im~

g(u-+1)=exp ( y (2u+1))g(u),

glu+7)=exp ( p ?;; . 7Qu+ z-))g(u).

On the other hand, it is known that 9, has zeros only at u=w, mod L and satisfies

Guz; u+1)=I4(z; w),
K7 u+7)=e "G (7; u).

Now the verification of g(«) being a section of £ is a straightforward calculation.
Q.E.D.

Proposition 2.7. There exists a system of local parameters x, y of So=D[I" U {P}
around P such that the natural map D—S, is expressed by

r=s e (51-7)

i \?
= ex
y=(s o0 (5 2—z)) s,
where f(u)=(e,—e,)/(w)—ey) and Pu)=§(c;u) is Weierstrass’ §-function and
e;=f(v)).
Proof. Since the proof is almost the same to that of [17]; Theorem 2, we
shall skech the outline of the proof. Let S be the nonsingular model of D/I"U{P}

constructed in Theorem 2.1 including the exceptional curve F and C with FC=1,
F*=—1, C?=—2. We define the map ¢: D/I",—P' X C by

[w, ul—~(a, 7) = (f @), gW)w).

On account of Lemma 2.6, we see that ¢ is well defined and A-invariant. Again
by Lemma 2.6, in a sufficiently small neighborhood of [0, w,] € D/I';, ¢ is biholomor-
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phically equivalent to the map
1 2
(s, )~ —, ©)=(% t5).
g

Thus by blowing up the range twice at (o, 7)=(c0,0) as in [17]; Lemma 7.2, we
obtain S. This shows that ¢ can be regarded as a rational map of D//";to S. The
completion of the proof is now immediate. Q.E.D.

Let Ly={u=0}, L,(={u=w,}, L,={u=w,} be the centers of the generating
unitary reflections of /I". The same symbol L; will denote the images of the line
{u=uw,} by the natural maps D—D/I"; and D—D/I". Then the natural map D—S,
can be visualized by the following figure.

TE=EX C
L I
[Lo L, L,
L,
D— — I’ F
¢ I —~1
E Y/
-2
=0 o=1 ¢=5"%
@, e,
L,
DI S
blow down ’
&—e
y=—_1x*
L, .}’ 6—¢e;
L, E ye=xt
]
i
. i
Lo 0 y=0
i
i
i
s

In figures hereafter, a line segment with two hooks denotes a nonsingular rational
curve, and a numeral beside a curve denotes the self-intersection number of the
curve.

Finally, for two groups I'1(z; 1,0,0;0) and [';,(z; 2, 0,0; 0), we construct the
Fuchsian systems of differential equations.
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Theorem 2.8. The two systems (Er . 1,0,0,0) A1 (Eppye;2,0,0,0) With the co-
efficients

Ph:(%—i-k) X +<3+k)—cx—,

y—X 3 y+cx?

2 1 <_1_ _k_) 1 _(L i)_1~
P 6y + 3 + 2/ y—x* 6 + 2/ ytext’

1 1+k x k x
Ph= S

4 y(y—x) 4 y(y+cx)

2 =2k 2(1+k

DPu y + (1+k)y——— + x2

and

pmm L (Lak) 1 (1K)
== s 32 )5 T3 2 ) e
N (L _k_) 1 _(L &) 1

P 6y+ 3+2 y——x 6+2 y4cx’

Dz 5 + + ) y_x+2c y—l—cx’

2=—1—<1 k k) kK 1 14k ¢
P 2 + +c +2 y—x 2 y+tcex

are completely integrable Fuchsian systerms of differential equations which have the
projective monodromy groups I'y(z;1,0,0;0) and I'y(z;2,0,0;0) respectively.
Their singular points are only on {y=0}U{y=x}U{y=—cx*} UH and {x=0}U{y
=0}U{y=x}U{y= —cx} U H respectively, where H denotes the line at infinity in
P*C). Here

fe=k(z)= 1 ( U —e1—2771>,

81 - €3 Im T
e;=e;(0)=0(r;0),  19;=19(0)=L(z; v,
and € is the zeta function (the integral of {-function).

Proof. We shall first calculate the four coefficients for I'=1"y(z; 1, 0, 0; 0).
By Proposition 2.7, one can easily check that [17]; Lemma 8.6 remains valid in this
case.

Lemma 2.9 ([17], Lemma 8.6).
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g— f// ou

1 (é"_)'(ﬂ)z
== )G T3

pgzzx( g )'3u ou_ 1 f7 ou

Proof. By proposition 2.7, we have

2
gj—ez:(el_ez)‘x—“-
Yy

g/ ox ay 3 f oy’
e (£ ) (21,
g oy
2 "N ( ou \? Py
e 25 (B o
where '
2
g@=9i(ein)exp (7
2Imz
Sw)=(e,—e)/(¥—e,).
Here a dash denotes the differentiation with respect to u.
Lemma 2.10.
ou x 1
1) —==2(e;—e)~ —,
W Jr=2a—e)T g
ou xt 1
@) _é‘-];:_(el_ez)? 357,
@ fl=—— L1 Ty,
e,—e, Xx*
2
@) (@)= —4e,—e,)He,— es)—%( y—x)(y+ cx?),
£ y( 1 1 1 1 1 1
5 =2 (— -
® @y 2 e—e, y—x° +el-—e2 x+e2—e3 y+ ex?
o'u xz( 1 c )1
6 ~_=2(e;—e,) — —,
) o (e1—ey) 7 % yhee )
17 1 1 1 c
7 f - 14 (— —3— —'—“"‘—> ,9
D f’ 2 e—e y—Xx° x? + y+ex? g
Y 1 2 (1 1+k ke
> ()t 2 pr
® g 4(e;,—e,)* Xx* \ X? +y—x2 y+cx? @)

)

27
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Thus the equalities (1), (2) and (3) are obvious. The algebraic relation of § and
P (=4 —e)({ —e)( —e;) yields (4) and (5). (6) and (7) are easy consequences
of (1), (3) and (5). To prove the last equality (8), apply the well known formulae

(log 9;(w))’' = — Pu+o,)— n/ws,

and

o L( G @@y
Plu+w)=Fw) 2 < Pu)—e, (3"(“)—6’2)2> .

Then we have

(g'[g) =(log 95(w))" +=/Im ¢
_____(ga/)z(__ 1 + 1 o 4 (—¥+e)+(—e—29+r/Imr) )

2 —e)  2P—e) (') %
By (4) and (5), this is equal to
ey (1] (e,—eky
T e R e i N

Thus if we notice that

(e;—ey)y _ 1 L_c
(ee—e)(y—x)(y+ex)  y—x*  y+cx’

we have (8). Q.E.D.

By Lemma 2.9 and Lemma 2.11, we obtain the desired coefficients.
Next, we shall calculate the four coefficients for I’ =1"1(z; 2,0,0; 0). Remark
2.5 implies the equality

D/I"=(DID)K[0, 2 Im <.
Since the element [0,2Im 7] operates on D as (z,u)—(z+2Im ¢, u), using the
expression of x,y in Proposition 2.8, we see that [0,2Im z| operates on D/I" as

(x, )—(—x,y). Thus we can choose the local parameter (x’,y") of D/I""U{P} at
P so that (x/, )=(x% »). On the other hand, we have the following formula.

Lemma 2.11 ([18]; (2.2)). If x'=Xx" and y’=y™, then we have

*S‘%l(zau;x,,y,):_L n—l 1 +S}1(Z, u;x9y) 1 s
3 n X nx™?
Sz us ) =—— =L L st un -1
3 yl mym—l
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Sz, u; X', y')= 8%z, u; X, y)—

nxn—-l

o om _o 2
mzyzm -2

my

Sh(z, u; X', y)=5%(z, u; x, y)—nTh-

xZn—z
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If we put n=2 and m=0 in Lemma 2.11, then the coefficients of (E; 1, o, 0; )
are calculated by those of (Er_.; 1,0,0;0) Obtained above.

It remains to prove that the two systems thus obtained are Fuchsian.

For the

system (Er_; 1,0, 0; )> 8t any point of P*(C) other than the origin 0, we can easily
check the hypotheses of [17]; Proposition 8.1, 8.2 and Corollary 8.3 and prove that
it is regular singular. Moreover, we can prove that the system is regular singular at
0, thus Fuchsian, by making analogous consideration to the proof of [17]; Theorem

3. This and the argument above imply that (E; ., 1, 0, ; o)) is also Fuchsian.

§3. Subgroup of Typé Iv

In this section, we shall study the subgroups of Type IV:

4
I'v(p,e5e)=2 I'i(i;p,r’,r)A”
v=1

where A=1[17,0,r].

Q.E.D.

Theorem 3.1. The following is the table of every subgroup I', up to conjugacy,

of Type IV and its graph of nonsingular model S of the space D/I" U {P}.

I'=I'w(p,&';e) Graph of S
I'(4p’+4,0;0 E

IV( p _l_ ] 1) ) _(p/+1)
I'y(4p’+2,0;0) F' —.2
I'w(4p'+2,1;0) —('+1)
I'(4p’+1,0; 0) S e Bar

—(p'+1)
FIV(4PI+49 1;0) [
—(@'+2)
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I'=Iy(p,é¢;¢) Graph of S
-2

I'v(4p'+4,0; 1) -4 |F —4
—@'+2)

I'v(4p’+4,1; 1)

I'y(4p"+4,0; 2)
I'y(4p’+3,0;2)

—_— ’+2
Ty(4p'4-3,05 3) ¢'+2)
2
I'v(4p'+1,1;0) -2 F —4
I(p'+1,1;1) ~@'+1)
-2
F1v(4p,+1, 1; 2) -2 F ;2 _2 2
—(@'+2)
2
’ .
I'y(4p’+2,0;1) & E 2 2 2
—('+2)
—4 F —4
['w(dp'+2,1;1
i ) —@'+1)
—2
FIV(4P’+23 1;2) -2 F —2
-(p’+2)

I'v(4p’'+2,1;3)

([ o——©O L g ® L ® |
—2 -2 —2—(p'+2)—2 —2 =2

I'w(4p'+3,0;0)

e
~(@'+1) —4
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I'=I"w(p,é¢;€) Graph of S

—2
I'w(4p’+3,0; 1)
-2 —(p'+2) —4

Here F denotes the rational curve E[{A) and p’ stands for nonnegative integer.
Proof. A=|i,0,r] operates on D/I’, as follows:
A: [w, ul—[e*t"w, iu].

The fixed points of (4) in E={[0, u]}C D/I", are [0, w,), [0, w,] of order 4 and [0, w,],
[0, w;] of order 2, where w,=0, w;=1/2, w,=(1+1)/2 and w,=i/2. Since 4 maps a
neighborhood of [0, w,] in D/I"; biholomorphically to that of [0, w;], we shall study
local behavior of {4} in the neighborhood of [0, w,] (=0, 1, 2).

Lemma 3.2. There exist a neighborhood U; of [0,w,] in D/I', and a local
parameter (s, t) around [0, w,] such that A operates on U, as follows:

A i (s, t)—(i5s, it) in U,
A% (s, t)—>((— D¢+, —1) in U,,
A (s, 1) (it Py, it) in U,.

Proof. 1If we notice that r/g=¢/4,
g(—wy, D)=exp ((27i/q)(2i(—1/2)+r(1)+1))=exp (2ri/2)¢’
and
g(im,, 1)=exp ((2i/q)(2i - iw,+r(1)+i)) =exp (2mi[4)(2¢' —p),
then the proof is analogous to that of Lemma 2.2. Q.E.D.

Lemma 3.3. Let U, (v=0,1,2,3) be the transformation group on X=C? gen-
erated by an operation

(s, £)—(2%s, it),
o be the natural map X—V,=X[¥, and
T M,—V,

be the minimal resolution. (V, has a unique singularity at the origin 0 if v=£0 and we
regard M,=V, if v=0.) For Y={(0,1)}CX, we define ¥ to be the closure of
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xtop(Y—{0}) in M,, which is a nonsingular curve in M,, and d, the degree of zero of
a*(ds/\dt) on Y. Then we have the following table of the graph of M, and the
number d,.

Y 0 1 2 3
Graph of ° ° *—o—e
M, —4 -2 -2 -2 -2
d, -3 -2 —1 0
Proof. Easy. Q.E.D.

Now we are ready to prove Theorem 3.1. Resolve the singularity of (D/I,)/{A)
by using Lemmas 3.2 and 3.3 then we have the nonsingular model S. The self-inter-
section number of F=E/{A4) is obtained by calculating the degree of zeros on F of
the form

[T g u)dw A du)®,

where g(u) is a nonzero section of the line bundle £-'(I";,). Since the proof is
similar to that of Theorem 2.1, we omit the details. Q.E.D.

Corollary 3.4. For a group I' of Type IV, the space D|I" U{P} is nonsingular if
and only if I' is conjugate to omne of the following four groups: I'y(4,0;0),
I'v(2,0;0), I'y(2,1;0), I'y(1, 05 0).

Remark 3.5. Four groups above are generated by unitary reflections and have
the following relations:

FIV(4> 0; O)= <FIV(23 1; 0)9 [_ 1: 1: 0]>a
FIV(]-: 0; 0)=<F11(i; 17 09 0; 0)9 [l: O; O]>9
I'v(2,0; 0)=<I"w(1,0;0), [0, 2].
Since we have already constructed the system (E,) with the projective mono-

dromy group I"'=1"14(2,1;0) in [17], we shall construct three systems with the pro-
jective monodromy groups I '1y(4, 0;0), I'1v(1,0; 0) and I'y(2,0; 0).

Theorem 3.6. For each I'=1"1y(4,0;0), I'v(1,0; 0), I'v(2, 0; 0), there exists a
Fuchsian system (E;) which has the projective monodromy group I'. The singular
locus Z . in the finite plane and the four coefficients of (E;) are given in the following
table.
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Four coefficients of (E£)
r 1 3 Defining
Pu P equation of
Z
Da D r
_1 .
6x 4x(y—x)
I'1y(4,0;0) xp(y—x)=0
__x _x
2y(y—x) 4y(y— x)
_x XY
3(x*—y) xi—y
I'v(1,0;0) y(y—x9)=0
. X 2y—3x*
16y(x*—y) 4(x*—y)
Yy Y
6x(x*— ) 4(x*—y)
I'n(2,0;0) x(y—x%)=0
. X 2y—3x?
8y(x*—y) 12(x*—y)

Proof. (i) Construction of (E; 4, 0,0). It was proved ([17]; Theorem 2)
that the local coordinate (x, y) of D/I"1y(2,1; 0) U{P} at P is given by

x=-Hu)e"**,

— x12)2 _e%
y=&we )——?Z(i; D—d

where 9(u)=39,(i; u)9y(i; iu). On the other hand, [—1,1,0] operates on D as
follows.

(z, wy—~(z—2iu+i, —u-+1).
If we use the relations 9(—u)=9(u) and IJ(u+1)=—e *** V), we see that
[—1,1,0] operates on D/I"x(2,1;0) U{P} as
(x, )= (—x, ).

Thus, by Remark 3.5 and Lemma 2.11, we can calculate the coefficients of
(Er v, 0 0)) by those of (Ep_ . 1, ,) Which are already known ([17]; Theorem 3).
(i) Construction of (E .y, o; o))-
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Lemma 3.7. g(u)=9,(; w)e """ is i-invariant, i.e., g(iu)=g(u).

Proof. Let H'(E, 2(¢7")) be the linear space of holomorphic sections of the
line bundle &~%(/",(i; 1,0,0)). By Lemma 2.7, we have g(u) € H'(E, 2(¢7")). More-
over, the equality g(iu,in)=g(u,) implies g(u):=g(iu) e H'(E, 2(¢")). On the
other hand, we have dim H°(E, 2(¢™'))=1 by Proposition 1.4. Since g(0)=g(0),
these imply g(u)=g(u). Q.E.D.

Let (x, y) be the local parameter of Sy=D/I"1(i;1,0,0;0)U{P} obtained in
Proposition 2.7. If we notice that £(i; iu)= —§(i, u) and ¢,(i)=0, then Proposition
2.7 and Lemma 3.7 imply that [, 0, 0] € /'y(1, 0; 0) operates on S; as

(x, »)—=>(x, — ).

Thus again by Remark 3.5 and Lemma 2.11, we obtain the coefficients of (E .« o, )
from those of (Er¢;1,0,0;0) in Theorem 2.8. If we notice that 7,(i)= —i,(i) then
by Legendre’s relation, we have 7,(i)==/2. This yields the desired results.

(iii) Construction of (Er e, ). In (i), we showed that

xlzg(u)en:iz/z
2
! — (o(u)e*i%/?): €1
V' =(g(u) )78"2(1‘; "

is a system of local parameters of D/I'y(1,0;0)U{P} at P. Thus the element
[0,2] e I'w(2,0; 0) operates on D/I'y(1,0; 0)U {P} as

(x,a y,)'_)(—xlﬂ y,)

Therefore, Remark 3.5 and Lemma 2.11 lead to the conclusion.
Three systems thus obtained are Fuchsian since, we know that (Er ¢, 1;0,) and
(Er iy, 1, 0, 0; 0p) are Fuchsian. Q.E.D.

§4. Subgroups of Type III and Type VI
In this section, we shall study the subgroups of Type II:

, ‘
I'ip; &)= ; FI, mA”,
and Type VI:
6
I'v(p; )= g I'y i A

where FI, III:FI, u(p)=1(; p, 1/ﬁa _1/\/_3_): FI,VI:FI, w(p)=1IC;p, \/—?,
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—4/3), A=[C,0,r], r=¢/+/ 3 p, and the index ¢ in I'yy(p, €) (resp. Iy p, €)) takes
the values e=0, 1, 2 (resp. e=0, 1, 2,3, 4,5).

Theorem 4.1. The graph of nonsingular model S of the space D[I' U{P}, for
each subgroup I" of Type III and Type VI, is given by the following table.

r Graph of S
-3
I'm(3p’+3; 1) —3 F —3
—@'+2)
-2 -2
'y (3p"+3;2 5 _
m(3p’+ ) .2 *2 F. _.2 42
—('+3)
—3
I'in(3p'+2;51) -3 F —2 —2
—(p'+2)
—3
I'u(B3p’'+1;2) -2 —2 |F —2 -2
—('+2)
I''u(3p'+3;0) 1.7
I'y(6p’+6;0) —('+1)
-3
I'y(6p"+6; 1) —6 F —2
—@'+2)
I'y(6p"+6; 2) -3 F —2 -2
o —eo—o—9o
I'y(6p"+6;4) —('+2)
-2 F -2
I'v(6p"+6;3
VI(p+ > ) '—(p’+2)
-2 2
’ .
I'y,(6p"+6; 5) ) F —2 -2 —2 —2 _o
' oy o T
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r

Graph of S

I'v(6p"+5;0)

—2 F -2 -2

I'y(6p’+5; 3) —('+2)
I'y(6p'+5; 4)
F -6
I'y(6p’+5;1
vi(6p'+ ) —(pE])
, -2
I'y(6p’+5; 2) -3 F —3
—('+2)
I'y(6p'+5;5) o5 & L& _02 —02
—@'+2)
I't:(3p" 425 0) F 3
I'y,(6p"+4; 0) —(@'+1)
I'yi(6p"+4;2)
-2
I'y(6p'+4; 1) —‘6 JF & ¢
—{@'+2)
2
I'yi(6p'+4; 3) < JdF 3
—(p'+2)
I'i(3p’+2; 2) -2 -2 F =2 -2
I'y(6p’'+4; 4) —(p'+2)
-2 F -2 -2 -2 -2 -2
I'y(6p"+4;5 ——0 © ©-
vi(6p” + ) —('+2)
Iyi(6p’+3;0) F -2
I'y(6p’+3; 3) —('+1)
-3 F —6

I'y(6p"+3; 1)

o——eo—o
—(@'+1)
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r Graph of §
’ . _n
I'v(6p"+3; 2)
I'y(6p"+3; 4) s
I'y(6p"+3; 5) 22 F 2 2 2 2 -2
—('+2) ¢—o
I''u(Bp’+1;0) . ]
-2
AN —@'+1)
I'y(6p'+2; 4)
-2 F -6
Iy (6p"+25 1
vi(6p"+ ) —*5
I'in(3p'+1; 1) -3 F -3
FVI(GP,+2; 2) —@+D
-2

Iy(6p’+2; 3)

—(@'+2)
-2
Io(6p"+2; 5) 3 5 2 2 ___’zv —_‘2 ;2
—('+2)
I'y(6p"+1; 0)
I'y(6p’+1; 2) -2 . ,Fl -3
I'y(6p’+1; 3) —(p'+1)
-6 F -2 -2
I'y(6p'+1; 1) T
__»2‘
I'yi(6p'+-1; 4) P e s 2
—('+2)
F -2 -2 -2 -2 -2

I'y(6p"+1;5)
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Here F denotes the rational curve E[{A*) for the group of Type II and E[{A) for
the group of Type VI, and p’ stands for nonnegative integer.

Proof. A operates naturally on D/I", y; as
A: [w, ul—[e*"w, Lu].

As is easily seen, every fixed point of {4} in E={[0, u]}CD/I,y; is {A)-conjugate
to one of the three fixed points: [0, 0] of order 6, [0, 1/2] of order 2 and [0, (14&)/3]
of order 3. Similarly, A% operates on D/I'; ;;; and the fixed points of (4?) in
ECD|T ', 1y; are [0, 0], [0, (1+-£)/3] and [0, (+£?)/3] of order 3. We shall study the
local behavior of (4) and {(A4*) in the neighborhood of each fixed point.

Lemma 4.2. There exist neighborhoods U, of [0, p] (p=0, 1/2, (1+)/3) in
DII'y y1 and V, of [0, 0] (¢=0,(1+&)/3, ((4+&»/3) in D/I', 111 and a local parameter
(s,t) in each U, and V, such that {A) and {A*) operate on U, and V, respectively as
Sfollows:

A:(s, 1)~ Ct)  in U,
As: (S: Z()""_)((_' 1)(p+e)S’ _t) in U1/23
A% (s, )~ ((E) P95, 8%)  in Uuioy

and

A% (s, t)H((CZ)esa g*t) in V, and V(1+§)/3a
A% (s, )= ((EDH“Ps, L) in Vi

Proof. Analogous to those of Lemma 2.2 and Lemma 3.2. Q.E.D.

Lemma 4.3. Let U,, (v=0,1,---,5,4p=1,2) be the transformation group
operating on X=C? generated by

(s, )—>('s, L")
o be the natural map X —V,,=X/¥,, and
.M, —V,,

be the minimal resolution. (V,, has a unique singularity at the origin 0 if v#0 and
we regard M,,=V,, if v=0.) Put Y={0,1)}CX and let ¥,, be the closure of
x top(Y—{0}) in M,,,d,, the degree of zero of z*(ds/\dt)®® on Y,, and d), the degree
of zero of w*(dsA\dt)® on Y,. Then we have the following table of the graph of
M,, and the numbers d,, and d,.
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(N ©on | L) | &D | GD | 4D 5,
Graph ° ° ° —o o—o—o—0—o
of M,, —6 -3 —2 -2 2| =2 -2 -2 -2 -2
d, -5 —4 -3 —2 —1 0

. | 0,2 | 22 (4,2)

Graph ° o—o
of M, —3 -2 -2

d,, —4 -2 0
d, -2 —1 0
Proof. Easy. Q.E.D.

By the lemmas above, we can prove the theorem. Since the proof is similar
to that of Theorem 2.1, we omit it. Q.E.D.

Corollary 4.4. For a group I' of Type III and Type VI, the space D/I'{P} is
non singular if and only if I' is equal to the following eleven groups: I'1(1;0),
I''u(350), I'y(1;0), I'yi(2;0), I'vi(3;0), ['vi(6;0), I'y(1;3), I'vi(3;3), I'vi(1;5),
I'y1(2;4), I'v(1; 2).

Remark 4.5. The eleven groups in the corollary are generated by unitary
reflections and have the following relations.

I3 0=(Tm(150), [0, 2v3]),

[

ra:0=(Ta(1;0), Jo, ¥2]),

(o150, [0, 2]
I3 0=(Tu(1:0), |0, Z¥3 |),
I'y1(2; 0)=<(I"vi(1; 0), [0, /3 ]),

(1133, [0, 27
Iu(3:39=(Iw(1:3), |0, 23 ),
T2 H=(T'vi(1; 5), [0, 4/ 3 1).

We shall express the natural map D—D/I"U{P} in terms of coordinates
(Proposition 4.8) for the groups I'=1"1;(1;0), I'v(1;0), I'vi(1;2), I'v(1;3) and
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I'yi(1;5). Note that these are the groups situated at the bottom of the tree in
Remark 1.11.

Lemma 4.6. Let P(u)=§(C*: u) be Weierstrass’ {-function with respect to the
lattice L=Z+*Z. Then we have

PCw)=—LP@w),
F'Cwy=—Fw,

div (8")=——2(0)+( 1';{ >+< z_ggz ),

div ©)=—30+(5)+(5)+(5)

where div (f) denotes the divisor of f on C|L.

Proof. Well known except for the zeros of £(u). Let ¢, and g, be the zeros
of ¥ in the fundamental paralleogram of L. Since {gq, and {q, are also the zeros of
£(u), we have

{g.=q, and {g,=q, mod L.

On the other hand, we have ¢;+¢,=0 mod L (Abel’s theorem). Now, one can
easily solve these equalities to obtain the zeros of ¥(u). Q.E.D.

Lemma 4.7. Let &y and &y, denote the line bundles §(1°; 111(1)) and &(I”; vi(1))
respectively. Then

Frr(u) =e€xp ( j%— ut— g—niu) «91(u— Cifﬂ)

and

3VI(u)=exp( J% u2)91(u)

are holomorphic sections of &7 and &3} respectively and satis,
y4 Yy Yy

S111(Cu) = Gy, div (Y)= ( C—; CZ )9

y1(Cu) = L9vi(w), div (8y1)=(0),
where 9,(u) is the odd theta function defined by

9,(w)=9(C; u):in:i;m (—1)" exp {ni@( 2”2_ L )Z—I—n'i(Zn— l)u}.
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Remark. To find the above expression, we use Proposition 1.4, (ii).

Proof of Lemma 4.7. By the well known formula

Hu+1D=—39 (),
K+ = — e, (u),

one can easily check that -9;;; and -9y; are holomorphic sections of ;1 and &5f respec-
tively. If we notice that &,; is {*invariant and &; is {-invariant, we see that
S(CPu) and 9y (Lu) are sections of &5} and &5 respectively.  On the other hand, by
Proposition 1.4, (i), we have

dim H°(E, 2(§n) =dim H(E, 2(570)=1.
These imply
Ym(C) = 2 9m(w)
and
Gvi() = 2,9v:(1)

for some 1, 2, € C*. Since div (9,)=1-(0), if we put u=0 in the first equality, we
have 1,=1. Differentiate the second equality and put #=0, then we have 1,=¢.
Q.E.D.

Proposition4.8. For each ' =1"1;;(1;0), I'v(1;0), I'vi(1;2), I'vi(1;3), I'vi(155),
there exists a local parameter (x,y) of S,=D/I" U{P} around P, such that the map
D— S, is given by

(2, 1> (5, 3) = (x(2, 1), Y, ).

The expressions of x=x(z, u) and y=y(z, u) are given by the following table.

r x y £ 0
#(55°)
Tiu(10) ow | O@wrSe) ey
pa+e (115
. 2 £-1 3 .L£-1 ] éa s P’
Fu@:0) | @@wif@ | @ | 1-{gel guw gl
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r x y M) 6(u)
Iy(132) | @@wWE /@) | @awy @) 1—{3‘%’;‘)}3 9 (1)
Tu(33) | QGWES7 @) | @awyf ) {@} 9P
(1 5) O 0w F@) {@} 9@

Here §(u)="8(*; u), e,=8(1/2) and w=exp < j% z).
Remark.  f(u) represents a covering projection E—E|{A*>=P" for the group
I'11(150) and E—E[{AY=P" for the other groups.

Proof of Proposition 4.8. (i) Case I'=1"y(1;0). Let L,={u=0} and L,=
{u=1}C D be the centers of the generating unitary reflections. The same symbol
L, will denote the images of L, by the natural maps D—D/I"; and D—D/I". Under
this convention, L, coincides with L, in S,:=D/I",, L, intersects transversely with F
in the nonsingular model S (Theorem 4.1), and L, has a cusp of type (2,3) in S,.
We shall express the map .S;— S in terms of coordinate. First we take the coordinate
(x,y) of S,C C? such that L,={y*=x%. Then if we blow up three times at (0, 0)
€ Sy, the coordinate representation of .S is obtained by the following figures.

Y e
x I —
¥y y
-3.
-2
{y2=x3}
A ., = F_ 7
blow up Y -1 x
Ll —T—>) X -t
{Vlx'=oo} Flx=1} {Flx*=0}
Sy S

Next we define the map ¢: S;— P*C) by

» [Wa U]H[Zl, Zyy 23]: [@(M)W, f(u): 1]

where [z, z,, z;] is 2 homogeneous coordinate of P? and 0, f are the functions given
in the second line of the table in the proposition. On account of Lemmas 4.6 and
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4.8, ¢ is well defined. Note that f(u) gives the covering projection E— E/{A)=P*
as follows:

1+¢

i
> ~
4 ¢ £is £
! s
| > |
[ [ i
| J | p!
1 0 =)

Let R be the image of S; by ¢. It will be shown that:

1P‘: [21, Zy, Zs]'__)(yzl'xs’ xZ/y)= (ZZ/Z:” ZI/ZZ)

gives a birational map: R—S, which gives the map o¢: S;—S and will complete
the proof.
Since

ava~(3)+(5)+(5)-(139)-(45).
avcrr-2(2) 2(5)3(§)-2(145) (),

the map ¢ is smooth? except on the lines {#=1/2} and {u=(1+¢)/2} in S,, and so
R is a union of the points [0,0, 1], [0,1,0]e P* and a open neighborhood of
{I0, z,, z,] € P?; 2,0, z;0}. Moreover, by the two equalities above, we see that
¢ is locally biholomorphic to the map

[w, t+%-]~—>[tw, t’, 1] e P?
in the neighborhood of the line {u=1/2}C S, and
[w, t+_1"3|'“C_]——>[t2w, 1,1 P

in the neighborhood of the line {u=(1+¢)/2}CS,. Thus by blowing up R(C P?

® In general, the map ¢: M—N is said to be smooth at x e M if the linear map dé: T,(M)
—Ty(N) is surjective, where T,(M) is the tangent space of M at x e M.
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twice at [0, 0, 1] and three times at [0, 1, 0], we have the surface visualized by the
following figure.®

(i/éz) z zl(ﬁzl/a)
Z3/ 2z Z, L, Z3 Z,7/ zy

ke B (&) (&)

RCP?

By the coordinate representation of S, this gives the map ..

(i) For the remaining cases, the assertions are proved by the same principle
as above: Let LC D be the union of the centers of the generating unitary reflec-
tions of I". First we take coordinate (x, y) of S,C C? so that the image of L by the
natural map D—S, may be represented by a polynomial equation: x()*—x%)=0,
y(P—x)=0, ¥(y—x)=0 and y(y—x°)=0 for each I'=1Iv(1;2), I'v(l;3),
I'y(1;5) and I'yy(1; 0) respectively. This induces a coordinate representation of
the surface S obtained in Theorem 4.1. Next we define the map ¢: S;—X by

[w, ul—~(2,, 2,) = (O@)w, f W)

where X=P? for '=1"y(1;2), I'yz(1; 3) and X=C X P for I'=1"y(1; 5), I'1:(1; 0).
Let R be the image of S, by ¢ and {/,} S, the set of lines on which ¢ is not smooth.
Finally we blow up X suitable times at the points {¢(/;)} X so that R may be
transformed to the surface of which the graph of the exceptional curves is the same
as that of S. This gives the birational map: +»: R—S and will complete the proof.

Q.E.D.

Finally we shall construct differential equations

Theorem 4.9. For each I' listed in Corollary 4.4, there exists a Fuchsian
system (E) which has the projective monodromy group I'. The singular locus Z in
the finite plane and the four coefficients of (E) are given in the following table.

® We blow up P2 successively to obtain the surface so that R may be transformed to a open
subset of the surface thus obtained. To save space, we omit the details.
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Four coefficients of (E,)

Defining
I P Pu Equation
Da Da of Z;
x? 3xy
3(*-) x'—y
I'i(15 0) W(y—x%)=0
- * _ 22—y
INx*—y) I(x*—y)
o ox=2y y
9x(x—y) 3x(x—y)
I'':(3; 0) xy(y—x)=0
__x _ Xy
3y(x—y) (x—y)
2 _Oxy
3(x*—»") 4(x*—y%)
I'v(1;0) P—x*=0
. 4x _ y
9(—7) 96 —37)
2x? 9xy*
3(x*—») 2(x*—y)
I'yy(2;0) Wy—x¥)=0
x . 3xX—=2y
9y(x*—y) 18y(x*—y)
2y? y
9x(x— ) 4x(x— )
I'y(3;0) x(y*—x)=0
4 Yy
3= 9~
2y y
Ox(x—) 2x(x—)
I'y1(650) xy(y—x)=0
. x . 3x—2y
3y(x—y) 18y(x—y)
" e
x—y
I'yy(153) ()P —x)=0
_ A 24y
9(x*—)y") (x*—y*)
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Four coefficients of (E;) Defining
r Ph Ph Equation
of Z
D DPi r
_2 __r
9x 12x(x— ")
I'v(3;3) xy(y*—x)=0
A 22X+
3(x—)y") 9y(x—y")
x° ) 12x'y
I'y(1;5) i = (y—x%)
> W(ry—x%=0
v 12x*y 2
x'—y 9
2x3+y 3xy
6x(x°— ) x*—y
I'vi(2; 4) xp(y—x5)=0
x
18("—) 9
4x3+ y* 9xy
6x(x°— ) 4(x°— %)
I'iy(152) x(*—x*)=0
. x y
9x*—)%) 9(x*—y")

Proof. First we treat the case /'=1";;;(1;0). By Proposition 4.8, we have

x=6(u)w,
y=(60)w)’ f ().
Lemma 4.10.

e () () z(f')'f .
Pu 3x ] 0x +3 f/ foax’
: 1 (0’ /xa_uﬁ_L<L)’Lal
Pe==3 e ) Y ox oy T3\F ) T 6y
pl_______ 6, /x<% 2
22 0 ay ]
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Proof. Analogous to that of [17], Lemma 8.6. Q.E.D.
Lemma 4.11.
ou__ ¥y
ox  ox(x*—y)
ou_ =1
0y 3Bo(x*—y)
du __ 2xy o
x> w(x*—yp)e
S =Y
o oext
(L) =—2ng
f x? ’

' /—L
( 0 ) X ¥,
where £ =§(Z; u) and 0 =§'((14+¢)/3).

Proof. Since we have

Y s 20
X3 S Y4+ w

and
(') = 49" —de},

all the equations, except the last, are easily shown. The homogeneity of {-function:
7s=_C""p, and Legendre’s relation: 7,0;—7;,—,=mni/2 yield p=x/+/ 3. Thus the
equality 6(u)=exp ((z/+/ 3 )u?— (4/3)zit)9,(u— (£ +£?)/3) and the formula

2
L log 9,u)= —$(w)— /o,
du
yield
()=-rfe-552)
j 3
Hence, by the addition formula of ¥, we have the last equality. Q.E.D.

By Lemmas 4.10 and 4.11 with the equality
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(03 — o’ X*(x°—y) ,
Y

the coefficients are calculated.

For the groups I'=1"y(1;0), I'y(1; 3), I'v«(1; 5), and I'v(1; 2), by the expres-
sion of x, y in Proposition 4.8, we can propose the lemmas analogous to Lemmas
4.10 and 4.11 and can calculate the coefficients. Thus we omit the proofs.

For the remaining groups, again by Proposition 4.9, we have

0, 2v3 ] ym@xy on Sy(I'm(1; 0))
[0,V 3]: (x> (x —) on Sy(I'v(1; 0))
0. 23] (=t on Sy(I'vi(1; 0))
o, 3] @it on S0
0. 2vF|: @e(=tnn  onSUw(1:3)

[0,/ 37: (x,)—=(—x) on Sy(I"y(1; 5))

where Sy(I")=D/I' U{P} and (x,y) is the local coordinate of Sy (/") obtained in
Proposition 4.8. Therefore Lemma 2.11 and Remark 4.6 yield the desired results.

Since every group in question belongs to the same tree in Remark 1.11, and the
Fuchsian system (E_;1,0,0,0) belongs to this tree, the systems thus obtained are
Fuchsian. This completes the proof.
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