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§1. Introduction

In the study of partial differential equations of elliptic and parabolic type the
theory of the $¥mathscr{L}^{(p,¥lambda)}$ spaces has proved to be very important (see for example [3] and
[6] $)$ . The theory of the spaces was first studied by C. B. Morrey [6] and later was
established by such various authors as S. Campanato, F. John?L. $¥mathrm{N}_{¥wedge}$irenberg,
G. N. Meyers and G. Stampacchia (see [12] and [14] for bibliography).

G. Stampacchia, on the other hand, introduced the theory of $¥mathscr{L}^{(p,¥lambda)}$ spaces of
strong type in [13], which is more general and complicated than that of $¥mathscr{L}^{(p,¥lambda)}$ spaces,
and some of the strong $¥mathscr{L}^{(p,¥lambda)}$ spaces were characterized in [8], [9], [10], [11], [12], [13]
and others. In [8] and [11], we have proved the space $¥mathscr{L}_{r}^{(p,¥lambda)}$ (the definition is shown
in 2) is imbedded into the space Lip $(n/r-¥lambda/p, r)$ with their corresponding norms,
where $ 1¥leqq p<¥infty$ , ? $p<¥lambda<n$ , $ 1¥leqq r<¥infty$ and $0<n/r-¥lambda/p¥leqq 1$ . In this paper, we
shall prove at first the converse imbedding theorem, that is, the latter space is im-
bedded into the former space with their corresponding norms and therefore isomor-
phism between two spaces holds. Secondly, with the aid of these results we obtain
a Morrey-Sobolev type imbedding theorem concerning spaces of functions whose
first derivatives $u_{x}$ belong to some strong $g^{(p,¥lambda)}$ spaces which are isomorphic to the
corresponding Lipschitz spaces. Finally, even if the strong $g^{(p,¥lambda)}$ spaces can never
be isomorphic to any Lipschitz space, an analogous imbedding theorem will be
proved under suitable conditions. These two theorems are generalizations and im-
provements of Theorems 1,2 in [10] and Proposition 1 in [11] and closely analogous
to the Morrey-Sobolev type theorem due to Stampacchia in the $¥mathscr{L}^{(p,¥lambda)}$ spaces [13].

In 2, relevant definitions, additional remarks and main results are stated.
In 3, the isomorphism theorem is proved.
In 4, the proofs of the imbedding theorems are given. Main tools for the

proof are theorems due to S. Campanato-G. N. Meyers in [1] and [5] respectively,
F. John?L. Nirenberg in [4], S. M. Nikol’skii in [7], M. H. Taibleson in [15] and
the author in [8] and [11] (with Y. Furush?).
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§2. Preliminaries

We shall always consider subfamilies of real-valued integrable functions $u(x)=$

$u(x_{1^{ }},¥cdots, x_{n})$ defined on the $n$ dimensional Euclidean space $E^{n}$ “with supports con-
tained in a fixed bounded $¥mathrm{c}¥mathrm{u}¥mathrm{b}¥mathrm{e}^{1)}’’$. Let $Q_{0}$ be a fixed bounded cube and we denote
a generic subcube of $Q_{0}$ having its sides parallel to those of $Q_{0}$ by $Q$ and its measure
by $|Q|$ . The mean-value of a function $u$ on $Q$ is denoted by $u_{Q}$ : $u_{Q}=|Q|^{-1}¥int_{Q}u(x)dx$ .

Definition 1. A function $u$ is said to belong to the space $¥ovalbox{¥tt¥small REJECT}_{r}^{(p,¥lambda)}=¥ovalbox{¥tt¥small REJECT}_{r}^{(p,¥lambda)}(Q_{0})$ (the
$¥ovalbox{¥tt¥small REJECT}^{(p,¥lambda)}$ space of strong type $r$ ), where $ 1¥leqq p<¥infty$ , $-¥infty<¥lambda<¥infty$ and $ 1¥leqq r<¥infty$ , if for
any system of $subc¥iota lbesQ_{j}$ of ‘finite number” $S=¥{Q_{j} : ¥cup Q_{j}¥subset Q_{0}¥}$ , no two of which
have interior point in common, tfie relation

(2. 1) $[u]_{¥ovalbox{¥tt¥small REJECT}(p,¥lambda)_{(Q_{j})}}=¥sup_{Q¥subset Q_{j}}¥{|Q|^{r/n-1}¥int_{Q}|u(x)-u_{Q}|^{p}dx¥}^{1/p}=K(Q_{j})<¥infty$

holds and, furthermore, there exists a constant $L=L(u)$ such that

(2.2) $¥sup_{¥{¥mathrm{Q}_{j}¥}=S¥in¥overline{S}}[¥sum_{j}|K(Q_{j})|^{r}]^{1/r}=L$

where $¥overline{S}$ denotes the family of all systems of subcubes considered above. We denote $L$

by $[u]_{¥ovalbox{¥tt¥small REJECT}_{¥gamma}(Q¥mathrm{o})}(p,¥lambda)$ and define a norm of the space $¥ovalbox{¥tt¥small REJECT}_{r}^{(p,¥lambda)}(Q_{0})$ by $[u]_{¥ovalbox{¥tt¥small REJECT}_{r}}(p,¥lambda)_{(Q_{0})}+||u||_{L^{p(Q¥mathrm{o})}}$ . This
norm renders the space $¥ovalbox{¥tt¥small REJECT}_{r}^{(p,¥lambda)}(Q_{0})$ with a structure of a Banach space.

Here, we make

Remark 2.1. (1) We may assume without loss of generality that each side of
$Q_{0}$ is parallel to some axis, the side length is $2R_{0}$ and $Q_{0}$ has its center at the origin.

(2) Let $Q(2R_{0})$ be the cube concentric with and parallel to $Q_{0}$ , and the side
length be twice that of $Q_{0}$ (hence, $Q(R_{0})$ means $Q_{0}$). Now, we extend the domain of
$u$ to $Q(2R_{0})-Q_{0}$ : that is, if $R_{0}<x_{k}¥leqq 2R_{0}$

(2.3) $u(x_{1^{ }},¥cdots, x_{k^{ }},¥cdots, x_{n})¥equiv u(x_{1^{ }},¥cdots, 2R_{0}-x_{k^{ }},¥cdots, x_{n})$ .

Furthermore, we repeat the same procedure as above to $Q((J¥overline{n}+2)R_{0})$.

(3) Finally, we select an infinitely differentiable function $0¥leqq¥gamma(x)¥leqq 1$ which is
equal to unity on $Q((¥parallel¥overline{n}+1)R_{0})$ and to 0 outside of $Q((¥sqrt{n}+2)R_{0})$ , and define
newly the function $u(x)$ as follows:

(2.4) $u(x)=¥gamma(x)u(x)$ on $Q((/¥overline{n}+2)R_{0})$

$=0$ outside of $Q((¥sqrt{n}+2)R_{0})$ .

1) For the detail, see Remark 2.1.
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Now, we can easily verify that if $u$ belongs to the space $g_{r}^{(p,¥lambda)}(Q_{0})$, then $u$ belongs
to the space $¥ovalbox{¥tt¥small REJECT}_{r}^{(p,¥lambda)}(Q((¥parallel¥overline{n}+1)R_{0}))$ .

Definition 2. A function $u$ is said to be Holder continuous of strong type $1¥leqq r$

$<¥infty$ with exponent $0<¥alpha<1$ on $Q_{0}$ , if the following two conditions are satisfied:
(1) $u$ is Holder continuous with exponent $¥alpha$ on $Q_{0}$ :
(2) there exists a constant $L=L(u)$ such that, for any system ofsubcubes $Q_{j}$ be-

longing to $¥overline{S}$ as in Definition 1, one has

(2.5) $¥sup_{¥{Q_{j}¥}=S¥in¥overline{S}}[¥sum_{j}|K(Q_{j})|^{r}]^{1/r}=L$

where $K(Q_{j})$ denotes the Hofder coefficient with exponent $¥alpha$ of $u|_{Q_{j}}$ , the restriction of
$u$ to the subcube $Q_{j}$ . We denote $Lb,v$ $[u]_{¥ovalbox{¥tt¥small REJECT}^{a}(Q_{0})}r$ and obtain a Banach space by taking
$||u||_{¥ovalbox{¥tt¥small REJECT}_{r}^{a}(Q_{0})}=[u]_{¥ovalbox{¥tt¥small REJECT}_{¥gamma}^{¥alpha}(Q_{0)}}+¥max_{x¥in Q_{0}}|u(x)|$ as the norm in $¥ovalbox{¥tt¥small REJECT}_{r}^{a}(Q_{0})$ .

Remark 2.2. By Campanato-Meyers’ theorem in [1] and [5], it is well-known
that for any $ 1¥leqq p<¥infty$ the space $¥ovalbox{¥tt¥small REJECT}_{r}^{(p,-p¥alpha)}$ is isomorphic to the space $¥ovalbox{¥tt¥small REJECT}_{r}^{a}(Q_{0})$ with
their corresponding norms (see Lemma 3.2).

Definition 3. A function $u$ is said to belong to the space Lip $(a,p)$ on $Q_{0}$ , where
$ 0<a<¥infty$ and $ 1¥leqq p¥leqq¥infty$ , that is, $u$ is said to satisfy a Lipschitz condition of order
$a$ in $L^{p}=L^{p}(Q_{0})$ , if there exists a constant $K=K(u)$ such that

(2.6) $¥sup_{|h|¥leqq/¥overline{n}|Q_{0}|^{1/n}}|h|^{-a+¥overline{a}}[¥int_{Q_{0}}|D^{¥overline{a}}u(x+h)-D^{¥overline{a}}u(x)|^{p}dx]^{1/p}=K$

where $¥overline{a}$ is the greatest integer less than $a$ . We denote $K$ by $[u]_{¥mathrm{L}¥mathrm{p}(a,p,Q_{0})}$. or $[u]_{¥mathrm{L}¥mathrm{i}¥mathrm{p}(a,p)}$

for simplicity and define the norm $||u||_{¥mathrm{L}¥mathrm{i}¥mathrm{p}(a,p)}$ by $[u]_{¥mathrm{L}¥mathrm{i}¥mathrm{p}(a,p)}+||u||_{L^{p(Q_{0})}}$ . Endowed
with this norm the space Lip $(a,p)$ becomes a Banach space.

Remark 2.3. It is obvious that if the function $u$, before extension to $E^{n}$ as was
mentioned in Remark 2.1 $(2)-(3)$ , belongs to the space Lip $(a,p, Q((J¥overline{n}+1)^{-1}R_{0}))$,
? $p<¥lambda<n$, then the newly defined function (2.4) also belongs to the space Lip $(a,p)$

and even to the space Lip $(a,p, E^{n})$ .

Now, our main results read as follows:

Theorem 1. Let $p$ , $¥lambda$ and $r$ be arbitrary constants satisfying $ 1¥leqq p<¥infty$ ,
$ 1¥leqq r<¥infty$ and $0<n/r-¥lambda/p<1$ . Then the space $¥ovalbox{¥tt¥small REJECT}_{r}^{(p,¥lambda)}$ is isomorphic to the space
Lip $(n/r-¥lambda/p, r)$ and

(2.7) $C^{-1}||u||_{g_{¥gamma}}(p,¥lambda)¥leqq||u||_{¥mathrm{L}¥mathrm{i}¥mathrm{p}(n/r-¥lambda/p,r)}¥leqq C||u||_{¥ovalbox{¥tt¥small REJECT}_{¥gamma}}(p,¥lambda)$
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where $C(>1)$ is a constant independent of $u^{2)}$.

Theorem 2. Let $u$ be a function such that its derivatives $u_{x}$ belong to the space
$¥ovalbox{¥tt¥small REJECT}_{r}^{(p,¥lambda)}$ , where $ 1¥leqq p<¥infty$ , $0<¥lambda<n$ , $ 1¥leqq r<¥infty$ and $0<n/r-¥lambda/p<1$ . Then thefollowing
estimates holdfor $u$ :

(1) If$ p<¥lambda$ , then $u$ belongs to $¥ovalbox{¥tt¥small REJECT}_{r_{1}}^{(¥tilde{p},¥lambda)}$ and $3$ )

(2.8) $[u]_{¥ovalbox{¥tt¥small REJECT}_{r_{1}}}(¥overline{p},¥lambda)¥leqq C||u_{x}||_{¥ovalbox{¥tt¥small REJECT}_{r}}(p,¥lambda)$

where $r_{1}$ is an arbitrary constant such that $(n/¥lambda)p<r_{1}^{4)}$.

(2) If$ p=¥lambda$ , then $u$ belongs to $¥ovalbox{¥tt¥small REJECT}_{r_{1}}^{(1,0)}$ (the strong John-Nirenberg space: see [4]
and Lemma 3.2) and

(2.9) $[u]_{¥ovalbox{¥tt¥small REJECT}_{r_{1}}}(1,0)¥leqq C||u_{x}||_{¥ovalbox{¥tt¥small REJECT}_{r}}(p,¥lambda)$

where $r_{1}$ is an arbitrary constant greater than $n$ .

(3) If$ p>¥lambda$ , then $u$ belongs to $¥ovalbox{¥tt¥small REJECT}_{r_{1}}^{1-¥lambda/p}$ and

(2. 10) $[u]_{¥ovalbox{¥tt¥small REJECT}_{¥gamma_{1}}^{1-¥gamma}}/p¥leqq C||u_{x}||_{¥ovalbox{¥tt¥small REJECT}_{r}}(p,¥lambda)$

where $r_{1}$ is an arbitrary constant such that $(n/¥lambda)p<r_{1}$ .

Theorem 3. Among the conditions of Theorem 2, if we replace the condition
“
$0<n/r-¥lambda/p<1$ ” by “

$(n/¥lambda)p<r$ , that is $n/r-¥lambda/p<0$ ”, in which case the space $¥ovalbox{¥tt¥small REJECT}_{r}^{(p,¥lambda)}$

cannot be isomorphic to any Lipschitz space, we obtain the following estimates for $u$ :
(1) If$ p<¥lambda$ and $(n/¥lambda)p<r<(n/¥lambda)¥tilde{p}$, then $u$ belongs to $¥ovalbox{¥tt¥small REJECT}_{r}^{(¥overline{p},¥lambda)}$ and

(2. 11) $[u]_{¥ovalbox{¥tt¥small REJECT}_{r}}(¥overline{p},¥lambda)¥leqq C||u_{x}||_{¥ovalbox{¥tt¥small REJECT}_{r}}(p,¥lambda)$ .

(2) If $ p=¥lambda$ , then $u$ belongs to $¥ovalbox{¥tt¥small REJECT}_{r}^{(1,0)}$ and

(2. 12) $[u]_{¥ovalbox{¥tt¥small REJECT}_{r}}(1,0)¥leqq C||u_{x}||_{¥ovalbox{¥tt¥small REJECT}_{r}}(p,¥lambda)$ .

(3) If$ p>¥lambda$ , then $u$ belongs to $¥ovalbox{¥tt¥small REJECT}_{r}^{1-¥lambda/p}$ and

(2. 13) $[u]_{¥ovalbox{¥tt¥small REJECT}_{¥gamma}^{1-¥lambda/p}}¥leqq C||u_{x}||_{¥ovalbox{¥tt¥small REJECT}_{r}}(p,¥lambda)$ .

2) Throughout the remainder of this article we denote, for simplicity, positive constants
possibly different but independent of functions under consideration by $C$ or sometimes
by $C(n)$ , $C(n, p, ¥lambda, r)$ etc. only indicating arguments on which the constants may depend.

3) In the case of $1¥leqq p<¥lambda<n,¥tilde{p}$ always means $(1/p-1/¥lambda)-1$ .
4) We note that for arbitrary constants $r$ and $r_{1}$ satisfying the inequality $ 1¥leqq r<r_{1}<¥infty$ , the

following relation holds with their corresponding norms:
$¥ovalbox{¥tt¥small REJECT}_{r}^{(p,¥lambda)}¥subset g_{r_{1}}^{(p,¥lambda)}¥subset g_{¥infty}^{(p,¥lambda)}=¥ovalbox{¥tt¥small REJECT}(p,¥lambda)$ .

In addition, if $n/r-¥lambda/p$ is equal to unity, then $u_{x}$ belong to the Sobolev space $H^{1,r}$ and
we can take $r_{1}$ equal to $(n/¥lambda)p$ .
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§3. Proof of the isomorphism theorem

We have proved the following:

Lemma 3.1. ([8], [11]) After extension to $E^{n}$ as was made in Remark 2. 1 $(2)-(3)$

we have

(3.1) $¥ovalbox{¥tt¥small REJECT}_{r}^{(p,¥lambda)}¥subset$ Lip $(l2/r-¥lambda/p, r)$

with their corresponding norms, where $ 1¥leqq p<¥infty$ , ? $p<¥lambda<n$ , $ 1¥leqq r<¥infty$ and $0<n/r$

$-¥lambda/p<1$ .

Therefore, it is sufficient for us to prove that the following converse imbedding
relation holds.

Proposition 3.1. Let $p$ , $¥lambda$ and $r$ be constants as in Lemma 3.1. Then we have

(3.2) Lip $(n/r-¥lambda/p, r)¥subset g_{r}(p,¥lambda)$

with their corresponding norms.

For this purpose, we need the following:

Lemma 3.2. The space $g_{T}(p,¥lambda)$ is isomorphic to the space $¥ovalbox{¥tt¥small REJECT}_{r}^{(1,l/p)}$ and

(3.3) $C(n,p, ¥lambda, r)[u]_{¥ovalbox{¥tt¥small REJECT}_{r}}(p,¥lambda)¥leqq[u]_{¥ovalbox{¥tt¥small REJECT}_{r}}(1,¥lambda/p)¥leqq[u]_{g}r(p,¥lambda)$

where $ 1<p<¥infty$ , $-p<¥lambda<n$ and $¥lambda/p¥leqq n/r$ .

Remark 3. 1. This lemma was proved in [1] and [5] independently $(-- p<¥lambda<0)$ ,
$¥mathrm{I}4]$ $(¥lambda=0)$ and [11] $(0<¥lambda<n)$ respectively.

By this lemma Proposition 3. 1 is equivalent to the following:

Proposition 3.2. Under the same condition as in Proposition 3.1, we have

(3.4) Lip $(n/r-¥lambda/p, r)¥subset¥ovalbox{¥tt¥small REJECT}_{r}^{(r,r(¥lambda/p))}$

with their corresponding norms.

Proof. Let $¥{u_{m}¥}_{m=1,2},¥ldots¥subset$ Lip $(n/r-¥lambda/p, r)$ be an arbitrary sequence of
functions which converges strongly to 0 in the space Lip $(n/r-¥lambda/p, r)$ as $m$ tends to
infinity. Here, we note that it suffices to consider the seminorm part only combin-
ing Definitions 1,3 and (3.4). Now, we take an arbitrary system of disjoint subcubes
$¥{Q_{j} : ¥cup Q_{j}¥subset Q_{0}¥}¥in¥overline{S}$. Then, we have
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$[u_{m}]_{¥ovalbox{¥tt¥small REJECT}^{(r,r(¥lambda/p))_{(Q_{j})}}}$

$=¥sup_{Q¥subset Q_{j}}[|Q|^{r¥lambda/np-1}¥int_{Q}|u_{m}(x)-(u_{m})_{Q}|^{r}dx]^{1/r}$

$¥leqq¥sup_{Q¥subset Q_{j}}[|Q|^{r¥lambda/np-r-1}¥int_{Q}dx¥{¥int_{Q}|u_{m}(x)-u_{m}(y)|dy¥}^{r}]^{1/r}$

by Minkowskii’s inequality, this is

$¥leqq¥sup_{Q¥subset Q_{j}}|Q|^{(1/r)(r¥lambda/np-r-1)}¥int_{Q}dy[¥int_{Q}|l¥mathit{1}_{m}(x)-u_{m}(y)|^{r}dx]^{1/r}$

$¥leqq¥sup_{Q¥subset Q_{j}}|Q|^{¥lambda/np-1-1/r}¥int_{|h|¥leqq/¥overline{n}|Q|^{1}/n}|h|^{(n/r-¥lambda/p)-n/r+¥lambda/p}dh$

$¥times[¥int_{Q}|u_{m}(x+h)-u_{m}(x)|^{r}dx]^{1/r}$

$¥leqq C(n,p, ¥lambda, r)[ll_{m}]_{¥mathrm{L}¥mathrm{i}¥mathrm{p}(n/r-¥lambda/p,r,Q_{j})}$.

As we assume that the sequence $¥{u_{m}¥}$ converges to 0 in the space Lip $(n/r-¥lambda/p, r)$

strongly, for every $j$ there exists a positive integer $m_{J}$ such that for any positive
number $¥epsilon$ , the following inequality holds:

(3.5) $[u_{m}]_{¥ovalbox{¥tt¥small REJECT}}(¥gamma,¥gamma(¥lambda/p))_{(Q_{j})}¥leqq C(n,p, ¥lambda, r)[u_{m}]_{¥mathrm{L}¥mathrm{i}¥mathrm{p}(n/r-¥lambda/p,r,Q_{j})}$

$¥leqq 2^{-j/r}¥epsilon$ $¥forall m¥geqq m_{j}$ .

Taking into account that the number of subcubes $Q_{j}¥in S$ is “finite” (see Definition
1), we may set

$m_{0}=¥max_{j}m_{j}$ and the following inequality holds:

(3.6) $[u_{m}]_{¥ovalbox{¥tt¥small REJECT}}(r,r(¥lambda/p))_{(Q_{j})}¥leqq 2^{-j/r}¥epsilon$ $¥forall m¥geqq m_{0}$ .

Hence, we have

$¥sum_{j}[u_{m}]_{¥ovalbox{¥tt¥small REJECT}}^{r}(r,r(¥lambda/p))_{(Q_{j})}¥leqq¥sum_{j}¥frac{¥epsilon^{r}}{2^{j}}<¥epsilon^{r}$ .

As the system $¥{Q_{j}¥}$ and the positive number $¥epsilon$ are arbitrary, this means

(3.7) $[u_{m}]_{¥ovalbox{¥tt¥small REJECT}_{r}}(r,r(¥lambda/p))_{(Q¥mathrm{o})}<¥epsilon$

and the sequence $¥{u_{m}¥}$ must converge strongly to 0 in the space $¥ovalbox{¥tt¥small REJECT}_{r}^{(r,r(¥lambda/p))}$ as $m$ tends
to infinity.

This completes the proof of this theorem.
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§4. Proof of the Morrey-Sobolev type imbedding theorems

Before proceeding to the proof of Theorem 2, we state the following:

Lemma 4.1 ([7]). We have

(4. 1) Lip $(a,p)¥subset$ Lip $(a-(¥frac{1}{p}-¥frac{1}{q})n.$ $q)$

with their corresponding norms, where $a,p$ and $q$ are arbitrary constants satisfying
$ 1¥leqq p<q¥leqq¥infty$ and $0<a-(1/p-1/q)¥neq n$ integer.

Proof of Theorem 2. As $u_{x}$ belong to the space $g_{r}^{(p,¥lambda)}$ , we have by Theorem 1

$C_{1}(n,p, ¥lambda, r)||u_{x}||_{¥ovalbox{¥tt¥small REJECT}_{r}}(p,¥lambda)¥leqq||u_{x}||_{¥mathrm{L}¥mathrm{p}(n/r-¥lambda/p,r)}$.

$¥leqq C_{2}(n,p, ¥lambda, r)||u_{x}||_{¥ovalbox{¥tt¥small REJECT}_{r}}(p,¥lambda)$

that is

$C_{1}||u_{x}||_{¥ovalbox{¥tt¥small REJECT}_{r}}(p,¥lambda)¥leqq||u||_{¥mathrm{L}¥mathrm{i}¥mathrm{p}(1+n/r-¥lambda/p,r)}¥leqq C_{2}||ll_{x}||_{¥ovalbox{¥tt¥small REJECT}_{r}}(p,¥lambda)$

and applying Lemma 4. 1, we obtain the following inequality:

(4.2) $[u]_{¥mathrm{L}¥mathrm{p}(a,(a-1+¥lambda/p)n)}.-1¥leqq C||u_{x}||_{¥ovalbox{¥tt¥small REJECT}_{r}}(p,¥lambda)$

where $¥max$ $(0, 1-¥lambda/p)<a<1$ .
Here, we divide the proof into three cases in accordance with this theorem.

(1) $ p<¥lambda$ : By taking $(a-1+¥lambda/p)^{-1}n=r_{1}$ , we have $n/r_{1}=a-1+¥lambda/p=a+¥lambda/¥tilde{p}$

and Lip $(a,(a-1+¥lambda/p)^{-1}n)=$Lip $(n/r_{1}-¥lambda/¥tilde{p}, r_{1})$ which is isomorphic to the space $¥ovalbox{¥tt¥small REJECT}_{r_{1}}^{(¥overline{p},¥lambda)}$

by making use of Theorem 1 again. In addition, as we can take $a$ arbitrarily close
to unity, $r_{1}$ also may be supposed to be an arbitrary constant greater than $(n/¥lambda)p^{5)}$.

This completes the proof of this case.
(2) $ p=¥lambda$ : The left hand side term of (4.2) reduces to $[u]_{¥mathrm{L}¥mathrm{i}¥mathrm{p}(a,n/a)}$ and the con-

clusion is immediate by a similar argument as in (1).
(3) $ p>¥lambda$ : By the same substitutions as in (1) we obtain

$[u]_{¥mathrm{L}¥mathrm{i}¥mathrm{p}(a,r_{1})}=[u]_{¥mathrm{L}¥mathrm{p}(n/r_{1}-1+¥lambda/p,r_{1})}$.

and, as $-1+¥lambda/p$ is negative, we can assert that by (4.2) and Theorem 1 the follow-
ing inequality holds:

(4.3) $[u]_{¥ovalbox{¥tt¥small REJECT}_{r_{1}}^{1-¥lambda/p}}¥leqq C||u_{x}||_{¥ovalbox{¥tt¥small REJECT}_{¥gamma}}(p,¥lambda)$.

Hence, the proof of Theorem 2 is complete.

5) In the cases (2) and (3), the situations about $r_{1}$ is the same.
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Now, to prove the last theorem we remark at first that in attaining the
supremums $[u]_{¥ovalbox{¥tt¥small REJECT}_{r}}(¥tilde{p},¥lambda)(p<¥lambda)$, $[u]_{¥ovalbox{¥tt¥small REJECT}_{r}}(1,0)(p=¥lambda)$ and $[u]_{¥ovalbox{¥tt¥small REJECT}_{¥gamma}^{1-¥lambda/p}}(p>¥lambda)$ respectively the cor-
responding spaces are isomorphic to the spaces Lip $(n/r-¥lambda/¥tilde{p}, r)$ , Lip $(n/r, r)$ and
Lip $(n/r-1+¥lambda/p, r)$ respectively and therefore we may suppose without loss of
generality that $¥{Q_{j}¥}¥in¥overline{S}$ are always systems of congruent subcubes. Because,
combining the following:

Lemma 4.2. ([8]) Let $p$ , $¥lambda$ and $r$ be constants such that $ 1¥leqq p<¥infty$ , ? $p<¥lambda<n$ ,

$1¥leqq r¥leqq p$ and $0<n/r-¥lambda/p¥leqq 1$ . Then we have

(4.4) $||u(x+h)-u(x)||_{L^{r}(Q_{j})}¥leqq C(n)[u]_{¥ovalbox{¥tt¥small REJECT}}(p,¥lambda)_{(Q_{j}^{¥prime})}|h|^{n/r-¥lambda/p}$

where $|h|$ is the side length of $Q_{j}$ and independent $ofj$ : furthermore, $Q_{j}^{J}$ is an arbitrary
one of the subcubes which contain $Q_{j}$ and have a common vertex and whose side length
is 2 $|h|$ . (This means that the following inequality holds:

(4.5) $[u]_{¥mathrm{L}¥mathrm{i}¥mathrm{p}(n/r-¥lambda/p,r)}¥leqq C(n)[u]_{¥ovalbox{¥tt¥small REJECT}_{r}}(p,¥lambda).)$ :

and Proposition 3.2, our assertion is completely verified.
Finally, we prepare the following:

Lemma 4.3. ([15]) Let $a$ be a positive constant less than unity. Then we have

$:(4.6)$ $C_{1}(n, a)[u]_{¥mathrm{L}¥mathrm{p}(a,p,Q_{0})}$.

$¥leqq|h|¥leqq¥rho¥frac{¥mathrm{u}}{n}|Q_{0}|1/n¥mathrm{s}¥mathrm{p}|h|^{-a}||u(x+f¥iota)-2u(x)+u(x-h)||_{Lp(Q_{0})}$

$¥leqq C_{2}(n, a)[u]_{¥mathrm{L}¥mathrm{i}¥mathrm{p}(a,p,Q_{0})}$ .

Now, we are going to give the

Proof of Theorem 3. Set $|Q_{j}|=|h|^{n}$ and $v(x)=u(x)-u(x-h)$ . Then, we have
$u(x+h)-2u(x)+u(x-h)=v(x+h)-v(x)$ and, applying Theorem 1 to the case (1)

$[u]_{¥ovalbox{¥tt¥small REJECT}_{¥gamma}}(¥overline{p},¥lambda)¥leqq C(n,p, ¥lambda, r)[u]_{¥mathrm{L}¥mathrm{i}¥mathrm{p}(n/r-¥lambda/¥overline{p},r)}$

making use of Lemma 4.3,

$¥leqq C(n,p, ¥lambda, r)[v]_{¥mathrm{L}¥mathrm{p}(n/r-¥lambda/¥overline{p},r)}$.

applying Theorem 1 again

$¥leqq C(n,p, ¥lambda, r)[v]_{¥ovalbox{¥tt¥small REJECT}_{r}}(¥overline{p},¥lambda)$

and by Lemma 3.2
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$¥leqq C(n,p, ¥lambda, r)[v]_{¥ovalbox{¥tt¥small REJECT}_{r}}(p,p(¥lambda/¥overline{p}))$

$¥leqq C(n,p, ¥lambda, r)¥sup_{|Q_{j}|=|h|^{n}}[¥sum_{j}(|Q_{j}|^{(¥lambda-p)/n-1}¥int_{Q_{j}}|v(x)-v_{Q_{j}}|^{p}dx)^{r/p}]^{1/r}$

applying Poincare’s inequality we have

$¥leqq C(n,p, ¥lambda, r)¥sup_{|Q_{j}|=|h|^{n}}[¥sum_{j}(|Q_{j}|^{¥lambda/n-1}¥int_{Q_{j}}|v_{x}(x)|^{p}dx)^{r/p}]^{1/r}$

$=C(n,p, ¥lambda, r)¥sup_{|Q_{j}|=|h|^{n}}[¥sum_{j}(|Q_{j}|^{r/n-1}¥int_{Q_{j}}|u_{x}(x)-u_{x}(x-h)|^{p}dx)^{r/p}]^{1/r}$

$¥leqq C(n,p, ¥lambda, r)||u_{x}||_{¥ovalbox{¥tt¥small REJECT}_{r}}(p,¥lambda)$.

For the proof of the last inequality, we refer the detail to Appendix 2 of [8]. Hence,
the proof of the case (1) is complete.

By the similar calculations as in the case (1) we obtain the conclusion of the
cases (2) and (3) respectively.

Therefore, our assertion is completely verified.

Remark 4. 1. Stampacchia’s imbedding theorem reads as follows:

Theorem. ([13]) Let $u$ be a function such that the first derivatives $u_{x}$ belong to
$g(p,¥lambda)=¥ovalbox{¥tt¥small REJECT}_{¥infty}^{(p,¥lambda)}$ , where $ 1¥leqq p<¥infty$ and $0¥leqq¥lambda¥leqq n$ . Then the following estimates hold for
$u$ .

(1) If$ p<¥lambda$ , then $u$ belongs to $¥ovalbox{¥tt¥small REJECT}^{(¥overline{p},¥lambda)}$ {the definition is shown in [12]$)$ and

$[u]_{¥ovalbox{¥tt¥small REJECT}}(¥overline{p},¥lambda)¥leqq C||u_{x}||_{¥ovalbox{¥tt¥small REJECT}}(p,¥lambda)$ .

(2) If$ p=¥lambda$ , then $u$ belongs to $g(1,0)$ and

$[u]_{g}(1,0)¥leqq C||u_{x}||_{g}(p,¥lambda)$ .

(3) If$ p>¥lambda$ , then $u$ belongs to $C^{0,1-¥lambda/p}$ and

$[u]_{c^{0,1-¥lambda/p}}¥leqq c||u_{x}||_{¥ovalbox{¥tt¥small REJECT}}(p,¥lambda)$ .

Therefore, we observe that as for the strong $¥ovalbox{¥tt¥small REJECT}^{(p,¥lambda)}$ spaces, closely similar results
to the Stampacchia’s theorem are obtained except the case: $ p<¥lambda$ and $(n/¥lambda)¥tilde{p}¥leqq r$.
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