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On Differential Equations for Orthogonal Polynomials
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1. As well known the so called classical orthogonal polynomials satisfy a
recursion formula of type

(1) $y_{n}(x)=(x-a_{n})y_{n-1}(x)-b_{n}y_{n-2}(x)$

as well as a linear differential equation

(2) $p_{n0}(x)y_{n}^{¥prime¥prime}(x)+p_{n1}(x)y_{n}^{¥prime}(x)+p_{n¥mathrm{z}}(x)y_{n}(x)=0$

with polynomial coefficients. The difference equation (1) is characteristic for
orthogonal polynomials at all if $a_{n}$ is real and $b_{n}$ is positive: each sequence $¥{y_{n}¥}$

of orthogonal polynomials satisfy such a formula and, conversely, if the sequence
$¥{y_{n}¥}$ is defined by (1), the polynomials form an orthogonal system. The question
of whether nonclassical orthogonal polynomials can be characterized by a linear
differential equation with polynomial coefficients has been dealt with repeatedly
(Shohat [7], Hahn [1], Krall [4, 5], Varma [8]) but no general result has been
published so far.

I show in the present paper that the minimal order of a linear differential
equation for orthogonal polynomials can only take the values two and four, and
that, in the latter case, the solutions can be constructed by means of the solutions
of second order differential equations. I further give some necessary conditions
for the parameters occuring in the case of order two.

2. The argument is $¥mathrm{e}¥mathrm{s}¥mathrm{s}¥mathrm{e}¥mathrm{n}¥mathrm{t}¥mathrm{i}¥mathrm{a}^{1}1¥mathrm{y}$ based upon the following theorem (Hahn [2]):
Suppose we are given two sequences $¥{a_{a}¥}$ , $¥{b_{a}¥}$ , $¥alpha=¥alpha_{0}$ , $¥alpha_{0}+1$ , $¥alpha_{0}+2$ , $¥cdots$ , of real or
complex numbers and let a sequence $¥{y_{a}(x)¥}$ of functions be defined by the recur-
sion formula

(3) $y_{a}(x)=(x-a_{a})y_{a-1}(x)-b_{a}y_{a-2}(x)$ .

Suppose further that a linear differential equation of order $k$

(4) $L_{a}(y):=p_{a0}y^{(k)}+p_{a1}y^{(k-1)}+¥cdots+p_{ah}y=0$
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exists for each value of $¥alpha¥geq¥alpha_{0}$ which is fulfilled by $y_{¥alpha}(x)$ . The coefficients $p_{aj}$ are
polynomials with degrees uniformly bounded with respect to $¥alpha$, and the highest
coefficient of $p_{a0}$ is one. The function $y_{a}(x)$ does not satisfy such an equation of
lower order than $k$ . Suppose finally that the equations $L_{a}(y)=0$ and $L_{a-2}(y)=0$

have no solutions in common. Then the following statements hold:
a) The genuine singularities of the equation $L_{a}(y)$ do not depend upon $¥alpha$ .

Zeroes of $p_{a0}(x)$ which depend upon $¥alpha$ define nebenpoints (apparent singularities).
b) If the variable $x$ moves along a closed path round a singularity, the linear

substitution which transforms the fundamental system is independent of $¥alpha$ .

c) It is possible, for each value of $¥alpha$, to choose a fundamental system of (4)
such that the suitably numerated functions satisfy the recursion formula (3).

If $¥alpha$ is an integer, the functions $y_{a}(x)=y_{n}(x)$ may be polynomials but the theorem
holds generally for solutions of the difference equation (3).

If, in the following, the expression “fundamental system of (4)’’ is used, it
means the special system

(5) $w_{a1}$ , $w_{a2}$ , $¥cdots$ , $w_{ah}$

which is characterized by the statement c) of the theorem.

2. The difference equation (3) is of order two. Consequently, two functions
$u_{a}(x)$ and $v_{a}(x)$ can be chosen from the system (5) such that the remaining k?2
functions are linear combinations with coefficients which are independent of $¥alpha$ but
may depend upon $x$ . We have either

(6) $w_{ai}=f_{i}(x)u_{a}(x)$ or $=g_{i}(x)v_{a}(x)$ ,

respectively, or we have

(7) $w_{aj}(x)=f_{j}(x)u_{a}(x)+g_{j}(x)v_{a}(x)$ ,

where the right hand terms do not fulfil the equation (4) individually.
For the present we exclude the case (7) which will be considered later on and as-

sume that the fundamental system (5) consists of functions

(8) $f_{l}u_{a},f_{¥mathit{2}}u_{a}$ , $¥cdots,f_{r}u_{a}$ ; $g_{1}v_{a}$ , $g_{2}v_{a}$ , $¥cdots$ , $g_{s}v_{a}$

with $f_{1}=g_{1}=1$ , $ r+s=f¥sigma$ .

3. We move the variable $x$ round a singularity, regarding statement b) of the
theorem. The matrix of the substitution can be written in the form

$¥left(¥begin{array}{ll}A & B¥¥C & D¥end{array}¥right)$$DB)$
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$A$ and $D$ are square of order $r$ and $s$, respectively, corresponding to the structure of
(8). The transformed functions are noted by an asterisk. We have

$f_{i}^{*}u_{a}^{*}=(f_{i}u_{a})^{*}$ , $i=1,2$, $¥cdots$ , $r$ ,

$f_{i}^{*}[u_{a}(a_{11}f_{1}+¥cdots+a_{1r}f_{r})+v_{a}(b_{11}g_{1}+¥cdots+b_{1r}g_{s})]$

(9)
$=u_{a}(a_{i1}f_{1}+¥cdots+a_{ir}f_{r})+v_{¥alpha}(b_{i1}g_{1}+¥cdots+b_{is}g_{s})$ .

The function $f_{i}^{*}$ can be written as a quotient, and because $f_{i}^{*}$ is independent of $¥alpha$ , we
conclude that numerator and denominator have a common factor involving $u_{a}$ and $v_{a}$ .
We obtain

(10) $a_{i1}f_{1}+¥cdots+a_{ir}f_{r}=¥kappa(b_{i1}g_{1}+¥cdots+b_{ts}g_{s})$ , $i=1$ , $¥cdots$ , $r$,

with a suitable factor $¥kappa$ and correspondingly

(11) $c_{j1}f_{1}+¥cdots+c_{jr}f_{r}=¥lambda(d_{j1}g_{1}+¥cdots+d_{js}g_{s})$ , $j=1$ , $¥cdots$ , $s$ .

The functions $f_{i}$ , $i=1$ , $¥cdots$ , $r$ , are linearly independent and so are the functions $g_{j}$ ,
$j=1$ , $¥cdots$ , $s$ . (10) and (11) are not compatible unless $r=s$, $k=2r$. Introducing the
notation

$f:=$ col $(f_{1^{ }},¥cdots,f_{r})$ , $g:=¥mathrm{c}¥mathrm{o}1(g_{1^{ }},¥cdots, g_{r})$ ,

we have

(12) $Af=¥kappa Bg$, $Cf--¥lambda Dg$ ; $f=¥kappa ¥mathrm{A}^{-1}Bg=¥lambda C^{-1}Dg$.

Since $f_{1}=g_{1}=1$ , $¥kappa$ and 1 are constants. The fundamental system (8), i.e. the vector
col $(fu_{a}, gv_{a})$ can be transformed into

(13) col $(fu_{a},fv_{a})$

by means of a substitution with the matrix

$¥left(¥begin{array}{ll}I & 0¥¥0 & ¥kappa A^{-1}B¥end{array}¥right)$ .

Next we construct the well defined linear differential equation of order $r$ which
has the functions $f_{1}$ , $¥cdots,f_{r}$ as solutions and interpret it as an equation for the solu-
tion quotients of another linear differential equation of order $r$ (cf. Schlesinger [6]
§172). If the functions $¥phi_{i}$ , $i=1$ , $¥cdots$ , $r$, form a fundamental system for the latter
equation, we have $f_{i}=¥phi_{t}/¥phi_{1}$ . (9) and (10) yield

$f_{i}^{*}(a_{11}f_{1}+¥cdots+a_{1r}f_{r})=a_{i1}f_{1}+¥cdots+a_{ir}f_{r}$ ,

whence
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$¥phi_{i}^{*}=a_{i1}¥phi_{1}+¥cdots+a_{ir}¥phi_{r}$, $i=1$ , $¥cdots$ , $r$ .

We further have

$u_{a}^{*}=u_{a}¥sum_{i=1}^{r}a_{1t}f_{i}+¥kappa v_{a}¥sum_{¥iota=1}^{r}a_{1i}f_{i}$

$=u_{a}¥sum_{i=1}^{r}a_{1i}¥phi_{t}/¥phi_{1}+¥kappa v_{a}¥sum_{i=1}^{r}a_{1i}¥phi_{i}/¥phi_{1}$,

$u_{a}^{*}=¥frac{u_{a}}{¥phi_{1}}¥phi_{1}^{*}+¥kappa¥frac{v_{a}}{¥phi_{1}}¥phi_{1}^{*}$

and similarly

$v_{a}^{*}=¥frac{u_{a}}{¥phi_{1}}¥phi_{1}^{*}+¥lambda¥frac{v_{a}}{¥phi_{1}}¥phi_{1}^{*}$

and we conclude that the functions $¥phi_{i}$ are transformed by the matrix $A$ and the
functions

(14) $¥psi_{a1}:=u_{a}/¥phi_{1}$ , $¥psi_{¥alpha 2}:=v_{¥alpha}/¥phi_{1}$

by the matrix

(15) $¥left(¥begin{array}{ll}1 & ¥kappa¥¥ 1 & ¥lambda¥end{array}¥right)$ .

The functions (14) are solutions of an equation of order two. If the equations both
for the $¥phi$ and the $¥psi$ are known, the equation of order $k=2r$ for the components of
(13) can be constructed as follows. One puts $ y=¥phi¥psi$ , writes down the derivatives $y$,
$y^{¥prime}$, $y^{¥prime¥prime}$ , $¥cdots$ , $y^{(2r)}$ , replaces $¥phi^{(r)}$ , $¥cdots$ , $¥phi^{(2r)}$ and $¥psi^{¥prime¥prime}$ , $¥cdots$ , $¥psi^{(2r)}$ using the differential
equations and eliminates the products $¥phi^{(j)}¥psi$ , $¥phi^{(j)}¥psi^{¥prime}$, $j=1,2$, $¥cdots$ , $r-1$ , from the
remaining system. The originating differential equation is satisfied by all products
$¥phi_{i}¥psi_{aj}$ , $i=1$ , $¥cdots$ , $r;j=1,2$ . It has rational coefficients if this holds for the starting
equations.

4. It remains to find out conditions which ensure that our differential equation
of order $¥mathit{2}r$ has polynomial solutions. Let us consider solutions of type

(16) $y_{a}=¥psi_{a1}¥phi_{2}-¥psi_{a2}¥phi_{1}$ ,

where $¥psi_{a1}$ , $¥psi_{a2}$ are linearly independent solutions of the $¥psi$-equation and $¥phi_{1}$ , $¥phi_{2}$

suitably chosen solutions of the $¥phi$-equation. If $x$ moves round a singularity, a poly-
nomial solution of form (16) is unaltered whereas the right hand terms are trans-
formed. After the transformation, the terms involving functions $¥phi_{i}$ with $i>2$ must
vanish identically. Since the $¥phi_{i}$ are linearly independent, such terms must not occur
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at all. Therefore the substitution of the $¥phi_{i}$ transforms the subspace spanned by $¥phi_{1}$

and $¥phi_{2}$ into itselfjust as the subspace spanned by the remaining $¥phi_{i}$ . Because this is
valid for all possible substitutions, one deduces that the differential equation for the
$¥phi_{i}$ can be decomposed and that $¥phi_{1}$ and $¥phi_{2}$ satisfy a differential equation of order
two. The right hand side of (16) is transformed into

$(a_{11}b_{21}-a_{21}b_{11})¥psi_{a1}¥phi_{1}+(a_{12}b_{22}-a_{22}b_{12})¥psi_{¥alpha 2}¥phi_{2}+(a_{11}b_{22}-a_{21}b_{12})¥psi_{a1}¥phi_{2}$

? $(a_{22}b_{11}-a_{12}b_{21})¥psi_{a2}¥phi_{1}$.

The $a_{ik}$ and the $b_{ik}$ are the coefficients of the substitution which acts upon the $¥psi$ ,
and the $¥Phi$ respectively. The first two terms must vanish, and the cofactors of the
last two terms must be equal. A short calculation yields

$a_{ik}=b_{tk}$ , $a_{11}a_{22}-a_{21}a_{12}=1$ .

The two fundamental systems are subjected to the same transformation. It is reason-
able to assume that the $¥phi_{i}$ are a special case of the $¥psi_{ai}$ , i.e. that for fixed $¥beta$

$¥phi_{i}(x)=¥psi_{¥beta i}(x)$ , $i=1,2$.

We define for $n=0,1,2$, $¥cdots$

(17) $q_{n}(x):=¥psi_{¥beta+n,1}¥psi_{¥beta-1,2}-¥psi_{¥beta+n,2}¥psi_{¥beta-1,1}$ .

Regarding (3) we have

$q_{n}(x)=(x-a_{¥beta+n})q_{n-1}(x)-b_{¥beta+n}q_{n-2}(x)$, $n=2,3$, $¥cdots$

and a comparision with (3) shows that $q_{n}(x)$ can be identified with $y_{¥beta+n}$ .
The function $q_{n}(x)$ satisfies a differential equation of order four by construction.

It has polynomial coefficients in case this is valid for the differential equations ful-
filled by the $¥psi_{a}$ . The expression (17) is a polynomial of degree $n$ if and only if $q_{0}(x)$

is of degree zero, i.e. constant.
In order to discuss the possibility of solutions of type (7), we construct that

linear differential equation of order $k_{1}$ which is satisfied by all functions $f_{i}u_{a}$ , $g_{j}v_{a}$ .
If there exist solutions of type (7), we have $k_{1}>k$. The foregoing arguments apply
to this equation, and if there exists a polynomial solution, we have $k_{1}=4$ and $k=3$ .
In this case the fundamental system is

$u_{a}$ , $v_{a},fu_{a}+gv_{a}=w_{a}$.

Regarding (12) we find $g=(1/¥kappa)f$, $w_{a}=f(u_{a}+(1/¥kappa)v_{a})$, and the fundamental system
can be replaced by
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$u_{a}$ , $u_{a}+¥frac{1}{¥kappa}v_{a}$ , $f(u_{a}+¥frac{1}{¥kappa}v_{a})$

which is of type (8). Thus we are justified to exclude the possibility (7).

5. We have to investigate whether the order four is minimal. To do so we
change the notation and rewrite (16) in the form

(18) $w_{1}=u_{1}v_{2}-v_{1}u_{2}$ .

The pairs $u_{1}$ , $u_{2}$ and $v_{1}$ , $v_{2}$ satisfy differential equations of order two with common
singularities. The four products $u_{i}v_{j}$ represent a fundamental system for an equa-
tion of order four. If (18) satisfies an equation of order two, the same is true for
another linear combination of the products which can be written as

$w_{2}=u_{1}v_{1}+cu_{2}v_{2}$ , $c=0$ or 1,

by a suitable notation. Now let $x$ move round a singularity. Due to the transfor-
mation of the pairs $(u_{1}, u_{2})$ and $(v_{1}, v_{2})$ we get

$w_{1}^{*}=(a_{11}a_{22}-a_{21}a_{12})(u_{1}v_{2}-v_{1}u_{2})$,

$w_{2}^{*}=(a_{11}^{2}+ca_{21}^{2})u_{1}v_{1}+(a_{12}^{2}+ca_{22}^{2})u_{2}v_{2}+(a_{11}a_{12}+ca_{21}a_{22})(u_{1}v_{2}+u_{2}v_{1})$.

Because $w_{2}$ must be a linear combination of $w_{1}$ and $w_{2}$ , we obtain

$a_{11}a_{12}+ca_{21}a_{22}=0$ ; $a_{12}^{2}+ca_{22}^{2}=c(a_{11}^{2}+ca_{21}^{2})$

and because of $¥det A=1$ we have $w_{1}^{*}=w_{1}$ , $w_{2}^{*}=w_{2}$ . The substitution is the identity
and that for all singularities. The differential equation is degenerated, which is not
possible but for the case that the equations for $u_{i}$ and $v_{i}$ are reducible. This case is
excluded.

Now all has been proved. We summarize: In order to construct orthogonal
polynomials satisfying a differential equation of order four, one has to take an
irreducible differential equation of order two whose solutions depend upon a para-
meter $¥alpha$ and satisfy a difference equation of type (3). One defines the function (17)
and obtains polynomials if $q_{0}(x)$ is independent of $x$ . Examples show that those
conditions can be fulfilled (Hahn [1], Varma [8]), e.g. by the polynomial

$q_{n}(x, ¥beta):=¥frac{¥Gamma(1-¥beta)}{¥vee¥overline{2¥pi}}(D_{¥beta+n}(x)D_{¥beta-1}(-x)+(-1)^{n}D_{¥beta+n}(-x)D_{¥beta-1}(x))$,

($D_{¥beta}(x)$ is the parabolic cylinder function). The differential equation and the recur-
sion formula are

$y_{n}^{(4)}-(x^{2}-4¥beta-2n)y_{n}^{¥prime¥prime}-3xy_{n}^{¥prime}+n(n+2)y_{n}=0$ ,

$y_{n}=xy_{n-1}-(n+¥beta-1)y_{n-2}$.
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For $¥beta=0$ we obtain the Hermite polynomials, and the differential equation is redu-
cible in this case.

6, Let us consider the case $k=2$ somewhat in detail. For simplicity, we do
not write the argument $x$ and we denote the parameter which equals the degree of
the polynomial by $n$ . The differential equation is

(20) $rr_{n}y_{n}^{¥prime¥prime}+s_{n}y_{n}^{¥prime}+t_{n}y_{n}=¥mathit{0}$

and in vector form with $y:=$ col $(y, y^{¥prime})$

(21) $¥mathrm{y}_{n}^{¥prime}=A_{n}y_{n}$ ; $A_{n}:=¥frac{1}{rr_{n}}¥left(¥begin{array}{ll}0 & rr_{n}¥¥-t_{n} & -s_{n}¥end{array}¥right)$ .

The zeros of $r$ are the singularities of the equation. The zeros of $r_{n}$ which depend
upon $n$ are nebenpoints. Equation (1) is equivalent to

(22) $y_{n}=((x-a_{n})I+M)¥mathrm{y}_{n-1}-b_{n}y_{n-2}$ , $M:=¥left(¥begin{array}{ll}0 & 0¥¥1 & 0¥end{array}¥right)$ .

Since the differential equations for $y_{n}$ and $y_{n-1}$ have the same genuine singularities
and the same substitutions, there exists a relation (cf. Schlesinger [1]§163)

(23) $y_{n}=P_{n}y_{n-1}$ ,

where the matrix $P_{n}$ is nonsingular and has rational elements. Using this relation
we can eliminate $y_{n}$ and $¥mathrm{y}_{n-2}$ from (22). The originating equation which involves
only $y_{n-1}$ holds for two linearly independent vectors and leads to the matrix equation

(24) $P_{n}=(x-a_{n})I+M-b{}_{n}P_{n-1}^{-1}$.

We further have from (21)

(23) $A{}_{n}P_{n}=P_{n}^{¥prime}+P_{n}An-1$ .

We put $d_{n}:=¥det P_{n}$ and denote the Wronskian of the distinguished fundamental
system of (20) by $w_{n}$ . It is divisible by $r_{n}$ as well known. We learn from (23) that
$w_{n}=d_{n}w_{n-l}$ , and we conclude that the numerator of $d_{n}$ is divisible by $r_{n}$ and the
denominator by $r_{n-1}$ . (24) shows that the denominator of the elements of $P_{n}$ is ex-
actly $r_{n-1}$ and that $d_{n}$ equals $r_{n}/r_{n-1}$ apart from a constant factor. The second solu-
tion of the fundamental system is defined except for a constant which we choose
such that

(26) $d_{n}=¥frac{b_{n+1}r_{n}}{r_{n-1}}$ .
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We write

$P_{n}=¥frac{1}{r_{n-1}}¥left(¥begin{array}{ll}¥alpha_{n} & ¥beta_{n}¥¥¥gamma_{n} & ¥delta_{n}¥end{array}¥right)$.

The elements of the matrix are polynomials. The relation (24) furnishes us with the
four equations

(27) $¥alpha_{n}=(x-a_{n})r_{n-1}-¥delta_{n-1}$ ; $¥beta_{n}=¥beta_{n-1}$ ,

(28) $¥gamma_{n}=r_{n-1}+¥gamma_{n-1}$ ; $¥delta_{n}=(x-a_{n})r_{n-1}-¥alpha_{n-1}$.

Obviously

(29) $¥beta_{n}=:¥beta$ and $¥alpha_{n}-¥delta_{n}=:q$

are independent of $n$ . The equations for the elements $p_{12}$ and $p_{21}$ in (25) are

$rr_{n-1}¥delta_{n}=-rr_{n-1}^{¥prime}¥beta+rr_{n-1}¥beta^{¥prime}+rr_{n-1}¥alpha_{n}-¥beta s_{n-1}$,

$¥beta t_{n}=r(r_{n-1}¥alpha_{n}^{¥prime}-r_{n-1}^{¥prime}¥alpha_{n}-r_{n-1}¥gamma_{n})$.

We see that $¥beta$ is divisible by $r$, $¥beta=:rp$ , and that

(30) $s_{n-1}=-rr_{n-1}^{¥prime}+¥frac{q+(rp)^{¥prime}}{p}r_{n-1}$ .

Combining (27) and (28) we obtain

(31) $¥delta_{n}+¥delta_{n-1}=(x-a_{n})r_{n-1}-q$.

Calculating $d_{n}$ immediately and regarding (26) we find

$¥alpha_{n}¥delta_{n}=b_{n+1}r_{n}r_{n-1}+rp¥gamma_{n}$ .

We now calculate $¥alpha_{n}¥delta_{n}-¥alpha_{n-1}¥delta_{n-1}$ , replace $¥gamma_{n}-¥gamma_{n-1}$ by $r_{n-1}$ according to (28) and
eliminate $¥alpha_{n}$ and $¥alpha_{n-1}$ by means of (27) and (28). We obtain

(32) $(¥delta_{n}-¥delta_{n-1})(x-a_{n})=b_{n+1}r_{n}-b_{n}r_{n-2}-rp$.

The equations (31) and (32) can be solved for $¥delta_{n}$ and $¥delta_{n-1}$ and then we can put up
an equation which does no longer contain the greek letter polynomials. This equa-
tion is an identity in $x$ and equivalent to a system of nonlinear difference equations
for the quantities $a_{n}$ , $b_{n}$ , and the coefficients of $r_{n}$ . The coefficients of $¥mathrm{p}$ , $¥mathrm{q}$, and $r$ are
parameters. The difference equations are necessary conditions for the said quan-
tities which have to be completed by additional requirements, e.g. the polynomial
$q+(rp)^{¥prime}$, occurring in (30), must be divisible by $¥mathrm{p}$ .
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7. We finally mention a procedure which furnishes us with polynomials of the
desired type. If we have a sequence $¥{y_{n}¥}$ of polynomials satisfying (1) with $¥alpha=n$

and if we define a sequence $¥{c_{n}¥}$ of numbers by the difference equation

$c_{n}c_{n-1}+b_{n}=a_{n}c_{n}$ ,

then the polynomials $w_{n}:=y_{n}+c_{n}y_{n-1}$ fulfil a recursion formula of type (1). If the
$y_{n}$ satisfy a differential equation (20), the same is true for the $w_{n}$ (Hahn [3]).
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