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1. Introduction, notation, summary.
The aims of this paper are paradoxical. In one direction we study and apply

differentiability of minimal time function (see subsequent definitions and notation):
Theorems 1, 5 and 2, 3, 4, 6. The reason for this interest is in the familiar const-
ruction of feed-back controls [14, p. 146], but this will not be treated here.

In the other, we show that often the minimal time function fails to have rea-
sonable differentiability properties: Corollaries 1 and 2 to Lemma 2, Proposition
4, Lemma 3 and its corollaries, Lemma 7. One of the points is that, in the better
examples, the dimension of control constraint space is less than that of state space,
so that the constraint set cannot be a neighborhood of the origin (see [13], p. 574,
and Theorems 3, 4 in [9] $)$ . This seems to indicate that direct application of the
Bellman equation, and of the corresponding Isaacs equation in value-centered treat-
ment of game theory, is confined to the fixed time-interval case (or to very artifical
constraint sets).

Throughout this paper we will be concerned with the control system, in
Euclidean $¥mathrm{n}$-space $R^{n}$ , symbolically represented by

$¥dot{x}=Ax-u$ , $u(t)¥in U$ ,

under assumptions listed below. (The unorthodox minus sign at $u$ is the right choice
in those cases where it matters, i.e., for $U$ not symmetric about 0.)

The problem is, implicitly, that of reaching the origin in least time. We will
study the minimal time function $T$ defined by

(1) $T(x)=¥inf¥{t:x¥in R(t)¥}$ .

Here $R(t)$ is the reachable set at time $t¥geq 0$ ,

$R(t)=¥{¥int_{0}^{t}e^{-As}u(s)ds$ : measurable $u:[0, t]¥rightarrow U¥}$

(the Aumann integral of $e^{-As}U$). We will take $T$ finite-valued, i.e., consider only
* Work on this paper was completed while the author held a Humboldt Award at the TH

Darmstadt.
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$T:R¥rightarrow R^{1}$ , where $R=¥bigcup_{t¥geq 0}R(t)$ is the reachable set (note that otherwise (1) defines
$ T(x)=+¥infty$ for $x$ $¥not¥in R$ ).

Assumptions. The dimension $n$ of state space is at least 1; the coefficient
matrix $A$ is real $¥mathrm{n}$-square; the constraint set $U$ is compact, convex, and contains
the origin; the control system is proper in the sense that $R(t)$ is a neighborhood of
0 for each $t>0$ .

Some remarks about these. $n=0$ occurs in decomposition theorems; $n¥geq 2$

was needed in [7]. It is a famous result that convexity of $U$ may be omitted. The
definition of proper systems is a modification of one due to LaSalle, [13]. It im-
plies controllability ($¥mathrm{i}.¥mathrm{e}.$ , that $R$ is a neighborhood of 0); if $U$ is symmetric about
0, it is equivalent with controllability, but not otherwise. Even for asymmetric
constraint sets there is a working characterization of controllability (Brammer [2];
also [8] $)$ ; For properness there are reasonable sufficient, and also necessary, con-
ditions; a rather brutal one is that the constraint $U$ be a neighborhood of the origin.

It is well known that the sets $R(t)$ are convex and compact, and that, in (1),
the infimum is actually a minimum. Thus $R(t)=¥{x:T(x)¥leq t¥}$ ; under our assump-
tions that the system is proper, we even have

(2) $¥partial R(t)=¥{x:T(x)=t¥}$

(for controllable systems which are not proper, the $¥mathrm{t}$-isochrone is a proper subset of
the boundary). Finally, $T$ is continuous: see Theorem 1 in [6], with unnecessary
assumptions on $U$ ; in point of fact, $T$ is continuous (or merely at 0) if and only if
the system is proper.

From Section 3 onward we will need the concept of support function $¥delta$ , to a
compact, convex neighborhood $U$ of 0 (Minkowski’ $¥mathrm{s}$ distanz funktion [15]; also see
[5] $)$ . For any $x¥neq 0$ define $¥delta(x)=¥delta$ by requiring

$ 0<¥delta<+¥infty$ , $¥frac{X}{¥delta}¥in¥partial U$ ,

and also set $¥delta(0)=0$ . It is easily verified that $¥delta$ is subadditive and homogeneous;
it follows that $¥delta$ is a Lipschitz function (ibid. p. 133), since

$|¥delta(x)-¥delta(y)|¥leq¥max$
$(¥delta(x-y), ¥delta(y-x))¥leq|x-y|¥cdot¥max_{|z|=1}¥delta(z)$ ,

with the maximum finite.
The notation $DT(x)$ will be used for the gradient (Jacobian row-vector) of $T$ at

$x$ .
The standing assumption and results just mentioned (in particular (2)) will be

used without explicit reference.
Section 2 contains the basic apparatus. This consists of the limit theorem,
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Proposition 1, which is an expansion of a very special case of a result due to
Aumann (the fundamental theorem of the integral calculus of set-valued functions).
It has been used, for other purposes, in [3] and [4]. The second is the addition
formula (6) for reachable sets, $¥mathrm{r}¥mathrm{e}$-interpreted in terms of the minimal time function,
Proposition 2. The addition formula itself should probably be classified as good
folk-lore (e.g., one of the inclusions is the “elementary observation” in Corollary 15
of [6] $)$ ; it has been considerably exploited, in [12]. The last, Proposition 3, prop-
erly belongs to calculus of several variables; the assertion is, essentially, that the
gradient is not only the only normal (differential geometry) but also the only exterior
normal (convex set theory).

Some direct consequences are presented in Section 3. In particular, it is shown
that $T$ never has a differential at 0, but does have directional derivatives there if
the constraint set is a neighborhood of 0. It may be noted how, in several in-
stances, Proposition 2 is used to carry over information about local behavior at
$x=0$ to other points $x$ . This method appears to fail for Theorem 1 (also see the
corollary), leading to

Conjecture 1. If $U$ is a neighborhood of the origin, then $T$ has directional
derivatives at each point $x¥in R$ .

In Section 4, Theorem 2, we present an apparently new principle of maximality
for $T$ . Some of the consequences then are given in the last section.

It is interesting to list the maximality principles now available (assumptions are
omitted; we refer to our notation and control system). From Pontrjagin’s maxi-
mum principle (see Theorem 4),

$¥max$ $DT(x)y=DT(x)¥cdot x$ $(t=T(x))$ ;
$y¥in R(t)$

from Bellman’ $¥mathrm{s}$ principle of optimality (see [13, p. 146] and our Theorem 3),

$¥max$ $DT(x)u=1+DT(x)¥cdot Ax$ ;
$u¥in U$

Theorem 2 states that

$¥max$ $DT(x)e^{-AT(x)}u=l$
$u¥in U$

and Theorem 6 that

$¥max$ $DT(x)e^{At}u=l$ $(u ¥in¥partial U)$ .
$x¥in¥partial R(t)$

Curiously enough, for Pontrjagin’s principle, both the basis and the geometric inter-
pretation are obvious; for Bellman’s principle, the basis is optimality, but the
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geometry is elusive; and for the last two, the geometric facts are clear, Lemma 8,
but the underlying principles are not.

Finally, a mention of what this paper should, but does not contain. The first
of these is a proof for

Conjecture 2. If the support function $¥delta$ is continuously differentiable outside
the origin, then $T$ is $C^{1}$ in $R-¥{0¥}$ .

According to Theorem 5, one need only prove differentiability. If one seeks
a condition on $U$ independent of $A$ , then $¥delta¥in C^{1}$ outside 0 is necessary (take $A=0$,
whereupon $ T=¥delta$).

Conceivably one might then approximate $U$ , e.g. from the outside, by con-
straint sets $U_{k}$ having smooth support functions; it would be desirable to study con-
vergence of the corresponding $DT_{k}$ (and, possibly, of the feedback controls obtained
thence). This could $¥mathrm{r}¥mathrm{e}$-kindle hopes of using Hamilton-Jacobi equations of approx-
imating systems in time-optimal problems of control and game theory.

2. Basic apparatus.

Proposition 1. (The limit theorem.) We have

(3)
$¥lim^{¥underline{R(t)}}=U$ ,
$t-0$ $t$

(4) $¥lim_{t¥rightarrow 0}¥frac{¥partial R(t)}{t}=¥partial U=¥lim_{x¥rightarrow 0}¥{_{T(x)}^{X}¥_¥}$ .

(All limits of sets?even the singletons in $(4)$?are taken relative to the Hausdorff
metric.)

Proof. We begin by establishing that, as $t¥rightarrow 0$ ,

(5) $¥int_{0}^{t}e^{-As}ds¥cdot U¥subset R(t)¥subset¥int_{0}^{t}e^{-As}ds¥cdot U+¥mathcal{O}(t^{2})$ .

This estimates the difference between $R(t)$ and $¥int_{e}^{t}e^{-As}ds¥cdot U$ (i.e., all admissible con-

trois versus the constant controls). The first inclusion is immediate. For the $¥sec-$

$¥mathrm{o}¥mathrm{n}¥mathrm{d}$ , take any $t>0$ and $x$ $¥in R(t)$ , so that

$x=¥int_{0}^{t}e^{-As}u(s)ds$ , $u:[0, t]¥rightarrow U$ .$u:[0, t]¥rightarrow U$ .

Set
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$v=¥frac{1}{t}¥int_{0}^{t}u(s)ds$ , $y=¥int_{0}^{t}e^{-As}dsv$ .

Here $v¥in U$ since $U$ is closed and convex; thus it will be sufficient to show that $x-$

$y=¥mathcal{O}(t^{2})$ , estimate independent of $x$ . We have $e=I+(e-I)$ , so that

$x-y=¥int_{0}^{t}(u(s)-v)ds+¥int_{0}^{t}(e^{-As}-I)(u(s)-v)ds$ ;

the first term vanishes, by choice of $v$ ; and the second has norm at most

$¥int_{0}^{t}|e^{-As}-I|ds$ . in $U=¥mathcal{O}(t^{2})$ .

Having (5), divide by $t$ and take $t¥rightarrow 0$ to obtain (3).
For $¥lim_{t¥rightarrow 0}¥partial R(t)/t=¥partial U$ we need to verify two facts. First, that $¥partial U$ is contained

in the $¥lim¥inf$ , or, equivalently, that

dist ($x$ , $¥frac{¥partial R(t)}{t})¥rightarrow 0$ for each $x¥in¥partial U$ .

Choose $y¥not¥in U$ close to $x$ ; by (3), $y¥not¥in R(t)/t$ for small $t$ , so that $y$ has the same
distance from $R(t)/t$ as from its boundary. Thus

dist ($x$ , $¥frac{¥partial R(t)}{t})¥leq|x-y|+$ dist $(y,$ $¥frac{¥partial R(t)}{t})$

$=|x-y|+$ dist ($y$ , $¥frac{R(t)}{t})¥leq 2|x-y|+$ dist $(x,$ $¥frac{R(t)}{t})$

where the last term tends to 0 with $t$ according to (3), and the first can be made
arbitrarily small (this part did not need convexity). Second, that $¥partial U$ contains the
$¥lim¥sup$ , i.e., that, if

$¥frac{¥partial R(t_{k})}{t_{k}}¥ni X_{k}¥rightarrow X$ , $t_{k}¥rightarrow 0$ ,

then $x¥in¥partial U$ . For this consider unit exterior normals $c_{k}$ to $R(t_{k})/t_{k}$ at $x_{h}$ ; it is
easily verified that any $c=¥lim c_{k_{m}}$ is an exterior normal to $U$ at $x$ , using (3).

To complete (4), observe that

$¥frac{¥partial R(t)}{t}=¥{¥frac{T(x)}{X}:T(x)=t¥}$

and that $x¥rightarrow 0$ is equivalent to $T(x)¥rightarrow 0$ .
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Corollary, dist $(R(t), tU)=¥mathcal{O}(t^{2})$ as $t¥rightarrow 0$ .

Remarks. Both (3) and the first formula in (4) hold even without assuming
that the system is proper; furthermore, the boundaries can even be taken within
the controllability subspace.

An alternate proof of (3) can be obtained from a far more general theorem due
to Aumann [1]; in our autonomous case it specializes to

$¥lim_{t¥rightarrow¥theta}¥frac{1}{t-¥theta}¥{¥int_{¥theta}^{t}e^{-As}u(s)ds$ : all $u(s)¥in U¥}=e^{-A¥theta}U$

for almost all $¥theta$ ; using continuity of $e^{-A¥theta}$ , this extends to all $¥theta$ , so that we may take
$¥theta=0$ . Apparently there is a continuous version of Aumann’ $¥mathrm{s}$ theorem.

In the context of the corollary, one-sided second order estimates are available:

$R(t)¥subset tU-¥frac{t^{2}}{2}A¥cdot U+¥mathcal{O}(t^{3})$ ,

$(t¥cdot I-¥frac{t^{2}}{2}A)U¥subset R(t)+¥mathcal{O}(t^{3})$ .

Lemma 1. For any nonnegative $t$ , $s$ we have the addition formula

(6) $R(t+s)=R(t)+e{}^{-At}R(s)$ .

Both inclusions here are immediate, using

$¥int_{t}^{t+s}e^{-A¥sigma}u(¥sigma)d¥sigma=e^{-At}¥int_{0}^{s}e^{-A¥sigma}u(t+¥sigma)d¥sigma$ ;

the essential point is that the constraint set $U$ is independent of time; actually, no
other assumptions on $U$ are needed. (In point of fact, there is an almost immedi-
ate version of the addition formula applying to non-autonomous linear systems.)

Proposition 2. Let $x$ , $y¥in R$ , $t=T(x)$ ; then

$T(x+e^{-}{}^{At}y)¥leq T(x)+T(y)$ .

Furthermore, equality holds for any $x¥in R$ , $s¥geq 0$ and some $y$ with $T(y)=s$ ; and also
for any $y¥in R$ , $t¥geq 0$ and some $x$ with $T(x)=t$ .

Proof. The inequality is a rephrasing of one inclusion in the addition formula.
The remaining assertions are also obtained thence, by convex trickery, and we will
only prove the first.

Since $t=T(x)$ , we have $x¥in¥partial R(t)$ , and therefore can find a nonzero exterior
normal $c$ to $R(t)$ at $x$ .
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Next choose a point $y¥in R(s)$ such that $c$ is also an exterior normal to $e^{-}{}^{At}R(s)$

at $e^{-}{}^{At}y$ ; necessarily $T(y)=s$ . But then $c$ is an exterior normal, at $z=x+e^{-}{}^{At}y$ ,
to (6); hence $T(z)=t+s=T(x)+T(y)$ .

Proposition 3. Assume $f:R^{n}¥rightarrow R^{1}$ has $M=¥{x:f(x)¥leq¥alpha¥}$ convex for some $¥alpha$ .

If $f$ has a differential at a boundary point $x$ of $M$ and $Df(x)¥neq 0$ , then $Df(x)/|Df(x)|$

is the only unit exterior normal to $M$ at $x$ .

Proof. For convenience we assume $x=0$ , $¥alpha=0=f(x)$ , and write $d^{¥prime}=Df(0)$ .
Consider any exterior normal $c$ to $M$ at 0. It will be sufficient to show that

(7) $d^{¥prime}x<0$ implies $c^{¥prime}x¥leq 0$ .

Indeed, a limit argument, using $d¥neq 0$ , will then yield that even $d^{¥prime}y¥leq 0$ implies $c^{¥prime}y$

$¥leq 0$ , so that $c=¥lambda d$ for some $¥lambda¥geq 0$ (a rudimentary version of Farkas’ lemma).
First let $¥rho$ be the remainder term in

$f(x)=f(x)-f(0)=d^{¥prime}x+¥rho(x)$ , $¥rho(x)=o(|x|)$ as $x¥rightarrow 0$ .

To prove (7), assume $d^{¥prime}x<0$ , so that also $d^{¥prime}y<0$ for $y=x/|x|$ . For small $¥epsilon>0$

we then have

$0>d^{¥prime}y+¥frac{¥rho(¥epsilon y)}{¥epsilon}=¥frac{1}{¥epsilon}(d^{¥prime}¥epsilon y+¥rho(¥epsilon y))=¥frac{f(¥epsilon y)}{¥epsilon}$ ,

so that $f(¥epsilon y)<0$ and $¥epsilon y$
$¥in M$ for small $¥epsilon>0$ . By assumption on $c$ , $c^{¥prime}¥epsilon y¥leq 0$ ; but this

then holds for all $¥epsilon>0$ , in particular, for $¥epsilon=|x|$ ; thus indeed $c^{¥prime}x¥leq 0$ as it was re-
quired to prove.

Remark. The convexity assumption may be removed if exterior normals are
replaced by the following concept: vectors $c$ such that

$¥lim_{M¥ni}¥sup_{y¥rightarrow x}c^{¥prime}¥frac{y-x}{|y-x|}¥leq 0$ .

Differentiability may be weakened slightly to: $f$ has a directional derivative which
is linear. However, $Df(x)¥neq 0$ cannot be omitted: in $R^{2}$ , if $f(x, y)=y^{2}$ , then $¥{f¥leq 0¥}$

is the $¥mathrm{x}$-axis, with two unit exterior normals at the origin.

3. Local behavior.

The following result will be improved upon in Lemma 4.

Lemma 2. $T$ has no stationary points ($i.e.$ , points where its differential van-
ishes).
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Proof. Note first that $T(y)/|y|$ is bounded away from 0 as $y¥rightarrow 0$ , since its
reciprocal has

$¥mathrm{l}¥mathrm{i}¥mathrm{m}y¥rightarrow 0¥mathrm{s}$
up $¥frac{|y|}{T(y)}=¥max_{u¥in¥partial U}|u|<+¥infty$

$¥mathrm{f}$

by (4) in Proposition 1.
Now assume $T$ is differentiable at $x$ and $DT(x)=0$ ; equivalently, $T(x+z)-$

$T(x)=o(|z|)$ as $z¥rightarrow 0$ . Set $t=T(x)$ ; for each $s>0$ choose $y$ so that equality holds
in Proposition 2; then $y¥rightarrow 0$ with $s$ , and

$0¥leftarrow¥frac{T(x+e{}^{-At}y)-T(x)}{|e{}^{-At}y|}=¥frac{T(y)}{|y|}¥cdot¥frac{|y|}{|e{}^{-At}y|}$ .

But the first factor is bounded away from 0, and, obviously, the second also: con-
tradiction.

Corollary 1. $T$ does not have a differential at 0.

Proof. $T$ has a minimum there, so its differential would have to vanish.

Corollary 2. If $U$ has an $n$-dimensional corner, at a point $u¥in U$ , then $T$ does

not have a differential at any point of the analytic curve $¥{¥int_{0}^{t}e^{-As}dsu:0¥leq t¥leq¥epsilon¥}$ for
small enough $¥epsilon>0$ .

Proof. The set of exterior normals to $U$ at $u$ has nonempty interior: some
normals remain such even if changed slightly. Thus there exists $¥epsilon>0$ and distinct
unit vectors $- c_{1}$ , $c_{2}$ such that $e^{-A^{¥prime}s}c_{k}$ is an exterior normal to $U$ at $u$ for $k=1,2$ and
$s¥in[0, ¥epsilon]$ . For any $t¥in[0, ¥epsilon]$ consider the point $x=¥int_{0}^{t}e^{-As}dsu$ on the described curve
(obviously $x¥in R(t)$). For any

$y¥in R(t)$ , $y=¥int_{0}^{t}e^{-As}v(s)ds$ , $v:[0, t]¥rightarrow U$,

we have

$c_{k}^{¥prime}e^{-As}v(s)¥leq c_{h}^{¥prime}e^{-As}u$ , $c_{k}^{¥prime}y¥leq c_{k}^{¥prime}x$ ;

thus both $c_{k}$ are exterior normals to $R(t)$ at $x$ . Thus there are distinct unit exterior
normals at $x$ .

Now, if $T$ had a differential at $x$ , necessarily $DT(x)¥neq 0$ by the preceding lem-
ma; and we obtain a contradiction with Proposition 3.
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Corollary 3. A necessary condition that $T$ have a differential at all points of
$¥partial R(t)$ for given $t>0$ is that $R(t)$ have no corners.

(Proof: Lemma 2 and Proposition 3.)

Proposition 4. If, and only if, $U$ is a neighborhood of 0, then $T(x)=¥mathcal{O}(|x|)$

as $x¥rightarrow 0$ . In the positive case $T$ is locally a Lipschitz function in $R$ ; in particular,
it has a differential almost everywhere in $R$ .

Proof. Again from (4), $¥lim¥inf|x|/T(x)=¥min$ $¥{|u|:u¥in¥partial U¥}$ , and the latter is
strictly positive precisely when $¥mathrm{O}¥not¥in¥partial U$, i.e., $U$ is a neighborhood of 0.

Assuming this, we have $T(x)¥leq¥alpha|x|$ for $|x|¥leq¥beta$ (and some $¥alpha$ , $¥beta$); from Proposi-
tion 2, with notation changed,

$T(y)-T(x)¥leq T(e^{At}(y-x))$ $(t=T(x))$ .

Thus, if $x$ , $y$ are in $R(¥theta)$ and $e^{At}(y-x)$ has length $¥leq¥beta$ , then

$T(y)-T(x)¥leq¥alpha|e^{At}(y-x)|¥leq¥alpha e^{|A|¥theta}|y-x|$ .

Since the latter estimate is symmetric between $x$ and $y$ , we have

$¥frac{|T(y)-T(x)|}{|y-x|}¥leq¥alpha e^{|A|¥theta}$

for $x$ , $y$ in $R(¥theta)$ if $|e^{At}(y-x)|¥leq¥beta$ .
The last assertion is a classical result [16, p. 311].

This extends Proposition 14 and Theorem 16 of [6] to more general constraint
sets. For the case that the constraint set is not a neighborhood of 0, we can pro-
vide more information:

Lemma 3. If, for an $m¥geq 0$ , the set

$U-AU+A^{2}U-¥cdots+(-1)^{m}A^{m}U$

is not a neighborhood of 0, then there exists a unit vector $y$ such that

$¥mathrm{l}¥mathrm{i}¥mathrm{m}a¥rightarrow 0¥mathrm{s}$up $¥frac{T(¥alpha y)}{¥alpha^{¥mu}}>0$ for $¥mu=¥frac{1}{m+2}$ .

Proof. Choose $y$ as an exterior normal at 0 to the indicated convex set. Then
also $y^{¥prime}(-A)^{k}u¥leq 0$ for $k=0$ , $¥cdots$ , $m$ and all $u¥in U$ . For $¥alpha>0$ set $x=¥alpha y$ . Now
either $ T(x)=+¥infty$ , and the subsequent argument becomes trivial, or $ t=T(x)<+¥infty$ .
In this case
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$x=¥int_{0}^{t}e^{-As}u(s)ds$, $u:[0, t]¥rightarrow U$,

$|x|=¥alpha=y^{¥prime}x=¥sum_{k=0}^{m}¥int_{0}^{t}y^{¥prime}(-A)^{k}u(s)¥frac{s^{k}}{k^{1}}ds+¥sum_{k>m}¥int_{0}^{t}¥leq 0+¥mathcal{O}(t^{m+2})$ ,

so that, with $¥mu=1/(m+2)$ ,

$¥frac{T(¥alpha y)}{¥alpha^{¥mu}}=¥frac{t}{|x|^{¥mu}}>_{6}>0$

for an $¥epsilon$ independent of $¥alpha$ .

Corollary 1. If $U$ is $a$ one-dimensional segment, then

$¥mathrm{l}¥mathrm{i}¥mathrm{m}x¥rightarrow ¥mathrm{s}$up $ T(x)/|x|^{¥nu}=+¥infty$ for all $¥nu>1/n$ .

Corollary 2. Under the assumptions of the lemma, for every $t¥geq 0$ there exists
a unit vector $y$ such that, for $¥mu=1/(m+2)$ ,

$¥lim_{a}¥sup_{¥rightarrow 0}¥sup_{x¥in¥partial R(t)}¥frac{T(x+¥alpha y)-T(x)}{¥alpha^{¥mu}}>0$.

Proof. Let $y$ be the unit vector in the direction $e{}^{-At}z$ , where $z$ is an exterior
normal at 0 to the indicated convex set. For every $¥alpha$ we then choose $x¥in¥partial R(t)$ so
that

$T(x+¥alpha y)-T(x)=T(¥alpha e^{At}z)$

(see Proposition 2); finally we apply Lemma 3.
Next we show, using the support function $¥delta$ of $U$ , that $T$ has directional deriv-

atives at 0.

Theorem 1. If $U$ is a neighborhood of 0, then, for every $x$ ,

$¥lim_{a¥rightarrow 0+}¥frac{T(¥alpha x)}{¥alpha}=¥delta(x)$ .

Proof. We need only treat $x¥neq 0$ . For small $|x|$ we have $x¥in¥partial R(T(x))$ . Thus,
for any $x¥neq 0$ and small enough $¥alpha>0$ ,

$¥frac{¥alpha}{T(¥alpha x)}¥cdot X¥in¥frac{¥partial R(T(¥alpha x))}{T(¥alpha x)}$ .

Take any sequence $¥alpha_{k}¥rightarrow 0+$ ; some subsequence $¥alpha_{h_{j}}=¥alpha$ will have $¥frac{¥alpha}{T(¥alpha)}¥cdot x¥rightarrow u¥in¥partial U$
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by Proposition 1. Since $u¥neq 0$ , the positive factor $¥alpha/T(¥alpha x)$ has a finite limit $¥beta$ , and
$¥beta x$

$¥in¥partial U$ . By definition, $¥beta=1/¥delta(x)$ , and this is independent of the chosen sequence
$¥alpha_{k}$ . Therefore

$¥lim¥underline{¥alpha}=¥underline{1}$

$a¥rightarrow 0+T(¥alpha x)$ $¥delta(x)$

as asserted.

Remarks. Somewhat more can be proved by a like reasoning: that $¥delta(x)/T(x)$

$=1+¥mathcal{O}(|x|)$ ; in particular, in Theorem 1, convergence is uniform on every ball (this
can also be verified directly). Hence, if $T_{A}$ corresponds to coefficient matrix $A$ ,
and $T_{B}$ to $B$ , with $U$ preserved, then $T_{A}/T_{B}¥rightarrow 1$ as $x¥rightarrow 0$ . In the same situation we
conclude from Lemma 6 (to follow) that $¥frac{DT_{A}(x)¥cdot x}{DT_{B}(x)x}¥rightarrow 1$ as $x¥rightarrow 0$ ,

Corollary. For any $x¥in R$ and $y$ ,

$¥lim_{a¥rightarrow}¥sup_{0+}$
$¥frac{T(x+¥alpha y)-T(x)}{¥alpha}¥leq¥delta(e^{AT(x)}y)¥leq|e^{AT(x)}||y|¥max_{|z|=1}¥delta(z)$

$¥lim_{a¥rightarrow}¥inf_{0+}¥frac{T(x+¥alpha y)-T(x)}{¥alpha}¥geq-¥delta(-e^{AT(x)}y)$ .

Proof. Apply the theorem after first estimating via Proposition 2; for the lower
estimate write

$T(x+¥alpha y)-T(x)=-(T((x+¥alpha y)-¥alpha y)-T(x+¥alpha y))$

and use $¥exp$ $AT(x+¥alpha y)_{}exp$ AT(x).

4. Maximality principles.

Theorem 2. If $T$ has a differential at $x$ , then

$¥max$ $DT(x)e^{-AT(x)}u=1$ .
$u¥in U$

Proof. Write $t=T(x)$ . For any $y$ in $R$ we have

$T(x+e^{-}{}^{At}y)-T(x)=DT(x)e{}^{-At}y+o(|y|)$ ;

apply the estimate of Proposition 2, obtaining, for $y¥neq 0$ ,

(8) $DT(x)e^{-At}¥frac{y}{T(y)}¥leq 1+o(1)¥cdot¥frac{|y|}{T(y)}$ .
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If we take $y¥rightarrow 0$ , then the last term tends to 0 (since then $T(y)=s¥rightarrow 0$ , and $¥frac{y}{s}¥in$

$¥frac{¥partial R(s)}{s}¥rightarrow¥partial U$ by Proposition $1)$ .

According to Proposition 1, every $u¥in¥partial U$ is a limit of suitable $y/T(y)$ with
$y¥rightarrow 0$ . Hence

(9) $DT(x)e{}^{-At}u¥leq 1$

for each $u¥in¥partial U$ , and, therefore, for $u¥in U$ also. Second, for each $s>0$ we can find
$y¥in¥partial R(s)$ (thus, $s=T(y)$) so that equality holds in the estimate; then equality will
hold in (8), and a suitable subsequence of $y/s$ will converge to a point $u¥in¥partial U$

(Proposition 1); therefore equality holds in (9) for this particular $u$ .
There is a companion formula in Theorem 5; the geometric interpretations of

these appears in Lemma 8.
The following formula, with notational changes, is well known [14, p. 146]

under the assumption that $T$ is continuously differentiate in a neighborhood of $x$ .
The strength of Proposition 1 is illustrated by weakening the hypothesis. The author
has contributed to (bad) folk-lore by inadvertently asserting the stronger version
without proof in [6, p. 340].

Theorem 3. If $T$ has a differential at $x$ , then

$¥max$ $DT(x)u=1+DT(x)¥cdot Ax$.
$u¥in U$

Proof. Consider any admissible control $u:R^{+}¥rightarrow U$ ; then, by the principle of

optimality, the point $x(t)=e^{At}(x-¥int_{0}^{t}e^{-As}u(s)ds)$ has

$T(x(t))¥geq T(x)-t$ $(0<t¥leq T(x))$

with equality if $u$ is taken optimally. Therefore

(10) $-1¥leq¥frac{T(x(t))-T(x)}{t}=DT(x)¥cdot¥frac{x(t)-x}{t}+¥frac{o(|x(t)-x|)}{t}$ .

Here the term

$¥frac{x(t)-x}{t}=¥frac{e^{At}-I}{t}x-e^{At}¥frac{1}{t}¥int_{0}^{t}e^{-As}u(s)ds$

(11)
$¥in¥frac{e^{At}-I}{t}x-e^{At}¥frac{R(t)}{t}$ ;
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according to Proposition 1, then, it remains bounded as $t¥rightarrow 0$ . Hence the remainder
term in (10) is

$o(1)¥cdot¥frac{|x(t)-x|}{t}¥rightarrow 0$ as $t¥rightarrow 0$ .

Returning to (11), there is a sequence $t=t_{k}¥rightarrow 0$ such that

$¥frac{x(t)-x}{t}¥rightarrow Ax-u_{0}$ , $u_{0}¥in U$

(see Proposition 1), and any $u_{0}¥in U$ can be so obtained by appropriate choice of $u$

$(1¥mathrm{o}¥mathrm{c}. ¥mathrm{c}¥mathrm{i}¥mathrm{t}.)$ . Thus, from (10),

$-1¥leq DT(x)(Ax-u_{0})$ (all $u_{0}¥in U$),

with equality attained by optimal $u$ on taking appropriate $t_{k}¥rightarrow 0$ .

Remark. The author has the impression that the maximum principles de-
scribed in the two preceding theorems are, in some sense, independent, and even
complementary.

Assume that $U$ has only finitely many extreme points $u_{1}$ , $¥cdots$ , $u_{r}$ ; the maxi-
mality relations of Theorems 2 and 3 will probably reduce, locally, to simultaneous
partial differential equations for $T$ ,

$DT(x)e^{-AT(x)}u_{h}=l$ , $DT(x)(u_{l}-Ax)=1$

(quasi-linear and linear, respectively); and Theorem 1 will act as a boundary con-
dition. E.g. for $n=2$ this might determine $T$ completely, see $[*]$ .

Theorem 4. If $T$ has a differential at $x$ , and we set $t=T(x)$ , then $DT(x)$ is
an exterior normal to $R(t)$ at $x$ , i.e.,

$¥max$ $DT(x)y=DT(x)x$ .
$y¥in R(t)$

Proof. We have $x¥in¥partial R(t)$ . There exists a unit exterior normal $c$ to $R(t)$ at
$x$ (this is what the Pontrjagin maximum principle reduces to in the linear time-
optimal problem). The assertion follows on applying Lemma 2 and Proposition 3.

5. Some consequences.

Lemma 4. $DT¥cdot e^{-AT}$ is bounded away from 0 (for points at which $T$ has $a$

differential).

Proof. Consider a ball, centered at 0, and with radius $¥rho>0$ so large that it
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contains $U$ . Then

$¥rho|DTe^{-AT}|=¥max_{|v|¥leq¥rho}DTe^{-AT}v¥geq¥max_{u¥in U}DTe^{-AT}u=1$

by Theorem 2; thus $|DTe^{-AT}|¥geq¥rho^{-1}$ .

Lemma 5. If $U¥dot{r}s$ a neighborhood of 0, then $DT¥cdot e^{-AT}$ is bounded {for points
at which $T$ has a differential).

This is established similarly, estimating $U$ from below.

Remark. We have used Theorem 2; Theorem 3 yields other estimates: if $U$

contains a ball of radius $¥sigma$ , and is in one of radius $¥rho$ (both centered at the origin),
then

$¥frac{1}{¥rho+|Ax|}¥leq|DT(x)|¥leq¥frac{1}{¥sigma-|Ax|}$

(the latter for $|Ax|<¥sigma$ only).

Lemma $¥epsilon$ . If $U$ is a neighborhood of 0, then

$DT(x)¥cdot¥frac{X}{T(x)}=1+¥mathcal{O}(T(x))$ as $x¥rightarrow 0$ .

Proof. Set $t=T(x)$ . Since $d^{¥prime}=DT(x)$ is an exterior normal to $R(t)$ at $x$ by
Theorem 4,

(12) $d^{¥prime}¥cdot¥frac{X}{t}=¥mathrm{m}¥mathrm{a}¥mathrm{x}y¥in R(L)d^{¥prime}¥cdot¥frac{y}{t}=.¥max_{u¥cdot R^{1}¥rightarrow U}d^{¥prime}¥cdot e^{-At}¥cdot¥frac{1}{t}¥int_{0}^{t}e^{As}u(s)ds$,

where we have written

$y=¥int_{0}^{t}e^{-As}v(s)ds=e^{-At}¥int_{0}^{t}e^{As}v(t-s)ds$ .

According to the corollary to Proposition 1 (with $-A$ replacing $A$ ), the integral term
in(12) is

$¥int_{0}^{t}e^{As}u(s)ds¥in t¥cdot U+¥mathcal{O}(t^{2})$ .

Since $DT$ is bounded near 0 (Lemma 5), we have in (12)

$¥underline{d^{¥prime}x}=¥max d^{¥prime}e^{-}{}^{At}u+¥mathcal{O}(t)=1+¥mathcal{O}(t)$ .
$t$ $u¥in U$
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Remark. Neither of the preceding two results holds for $¥ddot{x}=u$ , $|u(t)|¥leq 1$ : the
assumption on $U$ cannot be omitted.

Theorem 5. $DT$ is continuous on the set of points at which $T$ has a differen-
tial.

Proof. First note that $DT(x)¥neq 0$ at such points, by Lemma 2. Now assume
$T$ has a differential at $x_{k}$ and $x$ , and $x_{k}¥rightarrow x$ ; set $t_{h}=T(x_{k})$ , $t=T(x)$ , so that $t_{k}¥rightarrow t$ .

Then $DT(x_{k})/|DT(x_{k})|$ is a unit exterior normal to $R(t_{k})$ (Theorem 4) at $x_{k}$ , so that
each limit of a subsequence is a unit exterior normal to $R(t)$ at $x$ . By Proposition
3, this must coincide with $DT(x)/|DT(x)|$ . Thus

$DT(x_{k})¥rightarrow¥lambda DT(x)$

for some $¥lambda¥geq 0$ and subsequence, and it only remains to show that necessarily $¥lambda=1$ .

Apply Theorem 2: choose $u_{k}¥in U$ with $DT(x_{h})e^{-At_{k}}u_{h}=l$ , and a convergent sub-
sequence $u_{k}¥rightarrow u¥in U$ . Taking limits, we find

$1=¥lambda DT(x)e{}^{-At}u¥leq¥lambda¥cdot 1$ .

For the opposite inequality take $u¥in U$ with $DT(x)e^{-}{}^{At}u=l$ ; then, for small $¥epsilon>0$

and large $k$ ,

$1-¥epsilon<_{¥frac{1}{¥lambda}}DT(x_{k})e^{-At_{k}}u¥leq¥frac{1}{¥lambda}¥cdot 1$ ,

so that $¥lambda<1/1-¥epsilon$ ; finally, let $¥epsilon¥rightarrow 0$ .

Lemma 7. Assume $U$ is not a neighborhood of 0. If $c¥neq 0$ is an exterior nor-

mal to $U$ at 0, let $x=x_{t}$ be a point of $R(t)$ at which $e^{A^{¥prime}t}c$ is an exterior normal.
Conclusion: $T$ does not have a differential at $x$ . Furthermore, either $T$ does not
have a differential in a neighborhood of $x$ , or $ DT(y)¥rightarrow¥infty$ as $y¥rightarrow x$ , or $R(t)$ has $a$

corner at $x$ .

Proof. If $T$ had a differential at $x$ , then $d^{¥prime}=DT(x)$ would have the same di-
rection as $(e^{A^{¥prime}t}c)^{¥prime}$ (Proposition 3, Lemma 2, Theorem 4); thus $d^{¥prime}=¥alpha c^{¥prime}e^{At}$ , $¥alpha¥geq 0$ .
But then

$d^{¥prime}e{}^{-At}u=¥alpha c^{¥prime}u¥leq 0$ $(u ¥in U)$

by assumption on $c$ , contradicting Theorem 2.
In the second assertion, assume the first two alternatives do not obtain. Thus

there exist $y=y_{k}¥rightarrow x$ such that $DT(y)$ exist and converge to some finite point $d$ .

For each $k$ find $u=u_{k}¥in U$ so that $DT(y)e^{-AT(y)}u=l$ (Theorem 2); we may assume
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$u_{k}¥rightarrow u_{0}¥in U$ . Then $d^{¥prime}e^{-}{}^{At}u_{0}=1$ , $d$ is an exterior normal to $R(t)$ at $x$ (as a limit of
exterior normals), and $d$ is not parallel to $e^{A^{¥prime}t}c$ since

$¥mathit{0}¥geq c^{¥prime}u=(e^{A^{¥prime}t}c)^{¥prime}e^{-}{}^{At}u$ for $u¥in U$ .

Thus $R(t)$ has distinct exterior normal directions at $x$ .
As an application, consider the control system in $R^{2}$ associated with the har-

monic oscillator, $¥ddot{x}+x=u$ , $|u(t)|¥leq 1$ . It is known that $T$ is continuously differen-
tiable in an open, dense subset of $R(¥pi)$ [ $7$ , Theorem 6], and that $R(¥pi)$ has no cor-
ners [11, Exercise 15.2]. Hence, at points with coordinates $(¥pm 2,0)$ it is the second
alternative that obtains.

If $T$ were differentiate at 0, then a simple argument using Proposition 2 would
show that $DT(x)e^{-AT(x)}=DT(0)$ ; however, Corollary 1 to Lemma 2 disposes of this.
One might conjecture that, at least, $DT(x)e^{-AT(x)}$ is independent of $x$ ; this is readily
disproved by elementary examples. However, we will show that the set

(13) $¥{DT(x):x ¥in¥partial R(t)¥}¥cdot e^{-At}$

is independent of $t$ . Recall Minkowski’ $¥mathrm{s}$ concept of the polar $E^{*}$ to a subset $E¥subset R^{n}$

$[15]$ , [5]:

$E^{*}=$ {$y:y^{¥prime}x¥leq 1$ for all $x$ $¥in E$}.

Obviously $E^{*}$ is convex and closed; it is readily proved that $E^{**}=E$ if $E$ is convex
and closed.

Lemma 8. If $T$ has a differential at all points of $¥partial R(t)$ , then

(14) $U^{*}=¥{v:v^{¥prime}=¥alpha DT(x)e^{-At}, 0¥leq¥alpha¥leq 1, x¥in¥partial R(t)¥}$.

Proof. Denote the set on the right by $V$ . Then $V¥subset U^{*}$ follows from Theo-
rem 2 (and $0¥leq¥alpha¥leq 1$ ). Conversely, assume $v¥in U^{*};$ in proving $v¥in V$ $¥mathrm{w}¥mathrm{t}$ need only
treat $v¥neq 0$ . Find a point $x$ at which $e^{A^{¥prime}t}v$ is an exterior normal to $R(t)$ ; by Propo-
sition 3 and Lemma 2,

$(e^{A^{¥prime}t}v)^{¥prime}=v^{¥prime}e^{At}=¥alpha DT(x)$ ,

for some $¥alpha>0$ . Hence

$ 1¥geq¥max_{u¥in V}v^{¥prime}u=¥alpha¥max_{u}DT(x)e^{-}{}^{At}u=¥alpha$ ,

by Theorem 2. Thus $v^{¥prime}=¥alpha DT(x)e^{-At}$ and $0¥leq¥alpha¥leq 1$ , i.e., $v¥in V$ .

Corollary. If $T$ has a differential at all points of $¥partial R(t)$ , then the set (13) is the
boundary of a compact and convex neighborhood of 0, independent of $t$ .



$imal$ Time Function 113

Proof. From the assumptions and Lemma 7, $U$ is a neighborhood of 0.
Hence $U^{*}$ is compact, convex and a neighborhood of 0, so that $¥alpha=1$ in (14) defines
its boundary.

Theorem 5. If $T$ has a differential at all points of $¥partial R(t)$ , then, for every
$u¥in¥partial U$ ,

$¥max$ $DT(x)e^{-}{}^{At}u=l$ .
$x¥in¥partial R(t)$

Proof. Using the notation of the proof of Lemma 8, $U^{*}=V$, and therefore
$U=U^{**}=V^{*}$ . Thus

$U=$ {$w:v^{¥prime}w¥leq 1$ for $v¥in V$}

$=¥{¥alpha w:¥max_{v¥in V}v^{¥prime}w=1,0¥leq¥alpha¥leq 1¥}$

(since $V$ is a neighborhood of 0),

$=¥{¥alpha w:¥max_{x¥in¥partial R(t)}DT(x)e^{-}{}^{At}w=1,0¥leq¥alpha¥leq 1¥}$ .

Since every $u¥in¥partial U$ has $¥lambda u$ $¥not¥in U$ for $¥lambda>1$ , we conclude our assertion.
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