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On the Existence and Uniqueness of L-integrable Solutions
of a Certain Integral-Functional Equation
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It is well known that the solutions of even linear differential-functional equations
of neutral type may have nasty discontinuities in their derivatives and this encourage
us to consider the existence and uniqueness problems for such equations in setting
like the Sobolev space W*!. On the other hand for certain ‘“nice” neutral differential-
functional equations one may lose a great deal of information by looking only for
absolutely continuous solutions.

This is quite clear by the following example [4]

y@O=L-y(p+nn,  y0)=0 ()

with 0<<pA<1, le R', t € [0,al, h e C~[0, a], h(0)=0.

The result of paper [1] can be applied to this equation and we have the answer:
if |I/B|<1, there is a unique absolutely continuous solution of equation (x) with
L'[0, a] derivative. By the results of papers [2], [3] we have the answer: if |[5]<1
there is a solution of equation () with C[O, a] derivative. On the other hand by
the results of paper [4] we get the answer: if n>2, |[g"~'|<1 and Ip7=1 for j=0,
1, ..., n—2 there exists a unique solution of equation (x) in C”[0,a]. However
we note that, if 4(9)=t?h,(?), h, € C[O, a] and |I3?|<1 then by the result of [2], [3]
there exists a solution of (x) in C'[0, a] and it is unique in the class of functions such
that |y(0)|<Ct?*?, t € [0, a], C=const.

By this example we see that the sufficient conditions for existence of solution
of equation (x) depends on a class of functions in which this equation can be con-
sidered. The same observations relate to the nonlinear differential-functional
equation of neutral type of the form

Y (@O =F(t, y(e(2)), y' (D)), te[0,d] ()

with the initial condition y(#) = (?), t € (—z,0], 0<c<< + 0. But, by the substi-
tution y’(¥) =x(¢) the initial problem (xx) reduces to the following one

a(l)
() :F(t, +(0) +L x(s)ds, x(ﬁ(t))) (%)
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with x(£) = (@) =+'(8), t € (—z, O].
In view of this we shall consider a slightly more general integral-functional
equation of the form "

x<z>=F(z, f:“’ (2, 5, x(s))ds, x(ﬂ(t))) (1)

with the initial condition x(¥) =¢(?), ¢t € (—z, 0].

The purpose of this paper is to give an unified approach to the existence and
uniqueness problems for the equation (1) by which we arrive to the different suf-
ficient conditions related to appropriate classes of functions in which this equation
can be considered. '

1. Preliminaries.

Let B denote a fixed Banach space with a norm ||-|| and I=[0,a], ae R, =
[0, + o). By L(D, B), D-an measurable subset of R", (R the set of real numbers),
we shall denote the set of Bochner integrable functions defined on D with a range
in B. Let L=(I,R,) denotes the set of all measurable, essentially bounded and
nonnegative functions defined on 1.

We consider a function F: I X B X B—B such that F(-, u,v) € L(I, B) for any
u,v € B and a function f: I X1, X B—B such that f(-, -,u) e LU X1I,, B), where I,=
(—7,al, ze R,. We assume that «, 8: I—I,, «, fec L(,1) and «(0)<t, PO <!
for t e 1.

Moreover we introduce :

Assumption A,. The functions «, 8 have the property: if p is the Lebesgue
measure on R, then the inverse image by « and j of any subset of I of pg-measure
equal to zero is y-measurable.

Assumption A,. There exists a bounded yg-measurable function r: I—[1, + oo)
such that for any p-measurable subset E e [0, 7], ¢ € I, the inequality

LE<r()up(E), tel (2)
holds. Further on we shall write “measurable” instead of ““‘g-measurable”.

Assumption A,. 1° There exist functions &, k, € L(I, R,) and a nondecreas-
ing function [, ¢ L>(I, R.) such that

|F(, x, ) —F(, X, DI<k@ [ x—X[|+ L@ [|[y—=Y (3)

for any x,X,y,ye B, tel,

1@, 5, ) — 12, s, V<K | x—Y || (4)
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for any (¢,s) e IXI,, x,ye B
2° A function ¢: (—z, 0]—B is Bochner integrable.

Assumption A,. Let ke L(I,R,), I,he L*(I,R,), @, p e L{,I), @), B® ¢
[0,7], ¢ € I, be given and let @, B satisfy Assumption A,.

Let us define
Ei+1(t)=p(ﬁi(t))a Bo(t):f, te I} (5)
L @=1OLE®), I(H=1, tel
and
LO =191,
(Kg)(®) =j k(s)g(@(s))ds,
MO®) = 3 LDIE)
for g e L~(I, R,), with the almost everywhere convergence in I of the series.
It is obvious that
Li9)D=LOgE®) and Mg=3Lig. (6)

2. Some lemmas.

We have

Lemma 1. If 1° Assumption A, is satisfied,

20 Mh e L=, R.),

30 Mk/EeL=(,R,) and A=supess MPOD -
I k(@)

where

70 :jz k(s)ds,

then
a) there exists g, e L=(I, R,) being a unique in L*(I, R,) solution of the equation

and
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lim L*g,=0, (8)

n—co

b) the function g, is the unique in M(I, R ., g,) solution of the equation

g=Kg+Lg+h - (9)

where

MU,R,.,99=I[9: 9eL~U,R,),|g],< + ]

and
lgll= inf [e: g<cgal,
c) the function g =0 is in the class M(I, R ., 9,) the unique solution of the inequality
9<Kg+Lg. (10)

Proof. To prove a) we observe that L=(I, R,) is a complete metric space
with a metric defined by the norm

lglle=supess (9@ exp (2 [ kds)), 230,

and that the operator MK is a contraction for 2> /4. Indeed, if g ¢ L~(I,R,) and
z=MKg then according to (6) we have

2= 3 1) f ““ k(o) exp (z I j‘” k(s)ds)g(c‘v(r)) exp (—z f:(” k(s)ds)dr

i=0

< '92”* 3 L0 [exp (x jf“” k(s)ds)—l].

I

However, by the inequality exp (¢f) —1<gexp ¢ for ¢ ¢ [0, 1], t>0, we get

gl eods) 5 10 [P xas( [ kods)”
20 <9l exp (z[ k(s)ds) 5 l,;(t)j k(s)ds(j k(s)ds)
0 =0 0 0
and
y Y
izl gl A<t
The relation (8) follows by the equality
Lrg,=L*MKg,+L"Mh= 3, L‘Kg,+ 5, L‘h

and by the convergence of the series
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> L‘Kg, and ] Lth.
i=0 i=0

Now we prove b). At first we observe that g, is the solution of (9). Indeed,
by the equality Mg=LMg-+ g we have

Kg,+Lg,+h=Kg,+LMKg,+Mh)+h
=Kg,+LMKg,+LMh+h=MKg,+Mh=g,.

Now if § e M(I,R,, 9,) is a solution of (9) then by induction we get
n—1 n—1
J= ZE) Lih+ Z{}) LiKg+L"g.

Because there exists ¢ € R, such that 0 g<cg, then by (8) we infer L"§—0 for
n—oco. As a consequence of this we find that § satisfies (7). In view of the unicity
proved for this equation we conclude g=g,.

Finally we prove c). If g e M(I, R, g,) satisfies (10) then we have L*g—0 for
n—oo and

n—1 .
g<§) L’Kg+L"g.

Letting n—co we get g <MKg and by the contraction property of the operator MK
we find that g=0. Lemma is proved.

Remark 1. If for some #* ¢ I k(*)=0, then (ME)(#*)=0 and we can take
(MEY(t*) | k(r¥) =0.

We note that by Lemma 1 the existence and uniqueness assertion concerning
equation (9) (being the basic fact for our purpose) is related to the “individual”
properties 2° and 3° of the given functions 4, k, [ and B.

Let us now indicate some conditions being sufficient in order the assumptions
2° and 3° of Lemma 1 to be fulfilled.

(i) ForanykeL(,R,),heL~(I,R,)and ()=Iec R, 2°and3° obviously
are both fulfilled if /<<1. However we have

(ii) If i, keL=(,R,), IH=IecR,, BO<Ps 1, By [0, 1], then 2° and 3°
are both fulfilled if the series

QM@@

is convergent to a function from L=(I, R,) and I8, <<1. The last condition 78, <1
is sufficient for 2° and 3° if we suppose that A(f) < ht for some 7 e R,.

(i) If k() <k,-t?forsome k, e R, and g e (—1, + o0), (=l e R,, PO
Bs -t and if . max B, pEH <1, WO <ht?, pe R, then 2° and 3° hold.
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(iv) If hke LI, R,), B(O<Py-t, By c[0,1) and I<les, s>0, then 2°
and 3° hold.
We have also

Lemma 2. If 1° Assumption A, is satisfied,
20 A% =sup ess [z-p 5 li(t)(ﬁi(t))p] < foo
I =0
for some pe R,
3° MheV,I,R)),

where

Vo,R)=lg: 9 eL(I,R,), |4+ <+ o]

and
|9 ||5% =sup ess (t‘f’ l9(®| exp (—2 f k(s)ds)), A> A*,
I 0

then the assertion of Lemma 1 hold if the classes L*(I,R,) and M(I,R ., g,) are
both replaced by V,(I,R,).

Proof. First we prove a). It is obvious that V,(I,R,) is a complete metric
space with a metric defined by the norm ||-||44. Now the operator MK is a con-

traction in V,(I,R,). Indeed, if ge V,([,R,) and z=MKg we find that z+
MheV,I,R,) and

i Bi(t) & (t)
20=3 10 [ k@ exp (z fﬁ k(s)ds)
X (m))p[(a(r»-pg(a(r)) exp (—z [ " k(s)ds)]dz-
<M9lee 521,00y [exp (3 [ koyds) 1]

< llg lzl** g) li(t)(ﬁi(t))p[exp (,2 JZ k(s)ds) inm k(s)ds(J: k(s)dS)_l]

whence we obtain

A* .

A
”Z”**<—z—*”g”**a 1

The remaining argument is the same as in the proof of Lemma 1.
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Remark 2. 1t is clear that in Lemma 2 the case a= + oo is not excluded and
now L(I,R.), L~(I,R,) can be replaced by L,.(I, R,) and L3 (I, R,).
More effective is the following

Lemma 3. If 1° Assumption A, is satisfied,
2°  h()<ht? for some h,pe R,
3° IO<leR,, BO<P4t, By c[0,1], t e,
4° 1g,r<1,
then the assertion of Lemma 1 holds with L=(I, R,), M, R_, g,) both replaced by
V,I,R,).

Proof. This lemma is implied by the previous one.

Remark 3. Under the assumptions of Lemma 3 it is easy to prove directly
that the operator K+ L is a contraction in V' ,(I, R,). In fact, using the norm || ||,
we find for z=Kg+Lg,g9e¢V,I,R,)

2l (5 +182) 19

3. Existence and uniqueness.

Now we go back to the equation (1). We investigate this equation under as-
sumptions mentioned at the begining of this paper. To solve equation (1) we take
a function x,e L(I,, B) such that x,(1)=¢(#) for te (—7,0] and we define the
sequence {x,}

a(t)
X a0 :F(t, j (2, 5, xa(5))ds, xn(ﬁ(t))), tel (1)

and x,,,(®) =¢(?) for t € (—z,0]. We shall prove that {x,} is convergent (in L(I,, B))
to a solution of equation (1).
Put

(D) = | 20 (D) — 2D |, vn(t)zﬁ o (s)ds,  h(H)=v,) (12)

fortel and n=0,1, - --.

k() =k, (0k,(), @(@)=max[0,a(d)], PF{)=sup max [0, 5(s)] 13)
IO=L(r@)  tel. =

We have

Lemma 4. If 1° Assumptions A,—A, are satisfied,
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2°  the functions h,k,l, @&, B defined by (12) and (13) fulfil the assumptions of
Lemma 1, then

[1m@—x@lds=v.0<a0,  teln=01,.. (14)
where g, is the function defined in Lemma 1.
Proof. Using Assumption A; we find for £ e[
U (D) =|[X,(O) — X%, (D) ||

<| (e [ e, 5, xa(sds, x50 —F (e, [ 16,5, m(s)ds, (60|

+ () <k(D) j :“’ Un(8)ds -+ LU BD) -+ (7).

Integrating both sides of this inequality on the interval [0, 7] and using the monotoni-
city of /, we obtain

0 <j k() (@(0))dz + 1, (2) j Un(B(e))dz 4+ h(D).

By Assumption A, and by the same argument as in the paper [1] we find the
inequality

t B(L)
[} unt@naz<ro [ untsras.

In view of this we get

Oni®< | ()0 @ds -+ 100, BO) +h() 15)
fortel, n=0,1, ---.

We have obviously v,()=h(t) < 9,9, t € I, where g, is defined in Lemma 1. By
induction from (15) we arrive to the assertion of lemma.

In order to prove the convergence of the sequence {x,} we define the following
one

9nii=Kg,+Lg,, n=0,1,--. | (16)

where g, is from Lemma 1.
First of all we state

Lemma 5. If the assumptions of Lemma 1 are satisfied and {g,} is defined
by (16), then
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0<9,1.<9,<9 for n=0,1, - ..
and

lim g,=0 a.e. in I.

n—o0

The proof of this lemma is obvious.
Put

Uy, (D =X, ., —x,(], tel, n,p=0,1, ...

Lemma 6. If the assumptions of Lemma 4 are satisfied and y e L(I_, B), y(t)
=¢(t), t € (—z,0] is a solution of equation (1) satisfying the condition

[Iv©—x©ld<an, et a7
then
Onp®= 1016 =59 ds < .0 (18)
and
[[Ip@—x©1ds<g.0 (19)
fortel, n,p=0,1, ---.. /
Proof. By Lemma 4 we see that (18) hold for n=0 and p=0, 1, -.-. If we

suppose (18) then by assumptions introduced we get

a2, p O KO [t o5)ds+ 10t (B,
and by the same argument as in the proof of Lemma 4 we find
Vnn o< || K6V, 1 @$ds+ 1DV, BOD)
<[} k)9 @s)ds + 109, E) =, -
Now (18) follows by induction. In the same way using (17) and (16) we prove the

relation (19). Thus the lemma is proved.
Put

L., B,9)=Ily:ye L, B), yO)=¢(), t e (—z, 0], ||v, ][y <<+ oo],
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where
]
v, 0= Y@ —x@lds, el
Theorem 1. [If 1° Assumptions A,—A, are satisfied,
2°  the functions h, k, I, &, B defined by (2), (12), (13) satisfy Assumption A,,
3° Mh,Mk|keL=(,R,), where

)= j O k(s)ds,

then there exists a solution X e L(I., B) of equation (1), this solution is unique
in the class L _, B, g,) and

[1x0—-x@lds<g@, el (20)

Proof. By Lemma 6-—evaluation (18)—we infer convergence of the sequence
{x,} to some ¥ ¢ L(I,, B). Letting p—oco in (18) we have

f 13()—x,(8) | ds<g,@,  tel, n=0,1, .
Now we check that ¥ is a solution of equation (1). We have
a(t) .
Hx(z) —F(t, j 5, 59)ds, x(;a(z))) H O RENROY
n ”F(r | " 1,5, x50, xn(ﬁ(t))) —F(t, f " 12, s, K(s))ds, fc(ﬁ(z))) H
<IFO =20 @14 [ 115,06 =% ds+ 10 |5, (80) — 580 .
After integrating of this inequality we get

J

Now by letting n— oo we find the assertion.
To prove the uniqueness let us suppose that y ¢ L(I_, B, g,) is a solution of
equation (1). - We have then for some c ¢ R,

a(z) _ ¢
() —F(r, j S, x@)ds, X(ﬂ(r))) H de< j k() @(s))ds
FUDGED) + 90:11(D<29, 10

[ vo—x@ids<ea@, el

By the same argument as in proving of (19) we find
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[po—x@lds<egu, el n=0,1,...

and as a consequence of this y() =%(?) in L(I,, B). Thus the theorem is proved.
Combinning Assumptions A —A, with one from the conditions (i), (ii), (iii), (iv)
we find another existence theorem for equation (1).
We have then

Theorem 2. If assumptions 1°,2° of Theorem 1 are fulfilled and sup; 1,(£)r(f)
=1<1, then the assertion of Theorem 1 hold.

Remark 4. Wenote, if [()=[, e R, and f()=8, 1, 0< <1, then r(f) =
1/B, and we have the condition /,/8, <1 mentioned at the begining of the paper.
But if we have more information on a given functions we find :

Theorem 3. If assumptions 1°,2° of Theorem 1 are satisfied and (iii) holds
then the assertion of Theorem 1 holds.

Remark 5. Because .

h(t):ﬁ HF(T, J:(” iz, s, x,(5))ds, xﬂ(ﬁ(z')))—xo(r) de

then the condition A(f)<<Aht? assumed in (iii) depends on x,. If the integrand in
the definition of % is bounded then we have A(f)<<ht. Now if g=0, (=], ¢ R,
and B(f) =Py -1, By € [0, 11, then we get the sufficient condition: /,<1.

Using Lemma 3 we obtain the better result

Theorem 4. If assumptions 1°,2° of Theorem 1 are satisfied and
1° wH<<ht® for some h,peR,,
2° sup; Lr(w<l e R,,
3° BO<KPy-t, Byrecl0, 1], tel,
4° Ipr<1,
then there exists in V ,(I, R,) a unique solution of equation (1).

Remark 6. 1If under assumptions of Theorem 4 we have p(f)=pg, -t and [,(¥)
=/, ¢ R,, then the condition 4° in this theorem reads /,55 1< 1.

This result close to the result obtained in [2], [3] where equation (1) was con-
sidered in the space C(I, B). Itis important to note that not all results established in
[1] can be derived from the results of the present paper. For instance, unfortunately
in this paper we can not take g(f)=¢* for t e [0, 1/2], in this case the function r
defined by (2) is unbounded. It seems that some result can be obtained only if (1)
is considered in C(I, B) but not in L{, B).

Finally we note that the method presented in this paper can be used in order to
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obtain the existence and uniqueness result for more general integral-functional equa-
tions for instance of the form

Pa(t) an(t)
x(z):F(t, j A5, X j fult, 5, x(8)ds, x(B@D), - - - X(,Bm(t)))-

In this case we shall meet only some technical complications.
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