PageHeader : $\mathrm{F}\mathrm{u}\mathrm{n}\mathrm{k}\mathrm{C}\overline{\mathrm{i}}\mathrm{a}\mathrm{l}\mathrm{a}\mathrm{j}$ $\mathrm{E}\mathrm{k}\mathrm{v}\mathrm{a}\mathrm{c}\overline{\mathrm{i}}\mathrm{o}\mathrm{j}$ , 19 (1976) 53-63 Title : An Extension of Holder's Theorem Concerning Title : the Gamma Function AuthorInfo : By AuthorInfo : Steven B. BANK and Robert P. KAUFMAN AuthorInfo : (University of Illinois, U.S.A.) subsection : 1. Introduction. section : Part A The Hausdoffi Properties. subsection : 2. Definition. subsection : 3. Theorem. subsection : 4. Theorem. subsection : 5. Theorem. section : Part B Fields with the Hausdoffi Properties. subsection : 6. Notation. subsection : 7. Lemma, subsection : 8. Proposition. subsection : 9. Theorem. subsection : 10. subsection : 11. Notation. subsection : 12. Lemma. subsection : 13. subsection : 14. Proof of the Theorem in 10. section : Part $\mathrm{C}$ The Equation $\mathrm{y}(x+1)-y(x)=R(x)$ . subsection : 15. Lemma. subsection : 16. Proposition. section : Bibliograpliy