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On the Global Classical Solutions of

Nonlinear Wave Equations

By Yukiyoshi Esimara
(Fukuoka University, Japan)

§0. Introduction

Lef £ be a bounded domain in R” with sufficiently smooth boundary 0£2.
Points in &£ are denoted by x= (%, %, -, %,) and the time variable is denoted
by ¢. Consider the Initial-Boundary Value Problems:

0,1 u'"—Autu'(r+f(u,u’))=0 (x, )82 X% (0, )
(1) 0,2) ulx,0)=us(x), u'(x,0)=u(x) xeL
" (0,3 =0 on 02 t€[0, )
and
0.5 {u”—Au—l—u’(To—l-fo(u, u',v,v'))=0
’ V' —Av+o' (7 +filu, v, 0,0))=0 (a,)e2X (0, 0)
(2) 0,5) {u(x, 0) =uo(x), «'(x,0)=2(x)
’ v(x, D =v,(x), v'(x,0)=v(x) rxef
0,6) u=v=0 on 092 - t=[0, o)

where 7, 7; (¢=0,1) are constants and f, f; (z=0,1) satisfy some assumptions
given in §1.

In this paper the question of the existence of global classical solutions of
(1) and (2) is investigated.

Many authors, F.E.Browder [1], J.L.Lions [3], W. A. Strauss [4], W. V.
WaHL [9], etc, studied nonlinear evolution equations and wave equations and
discussed the global or the local solutions in the generalized or the classical
sense. It is comparatively easy to find generalized solutions of equations with
monotonous nonlinear terms, but in general even with monotonicity conditions,
it seems quite difficult to solve the problems in the classical sense for given
initial values.

In the author’s previous papar [2], the local existence of a classical solution
for the equation

0,7 w'—Au+Cu?+Co(u! )24 Cy|Fu|2:=f
(C; (#=1,2,3) are constants, p; (:=1,2,3) are positive
integers and f is some smooth function of (x,2)€2X[0, T))
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was proved by giving sufficiently smooth initial values. It is scarcely possible
to get a global solution for the above equation (0,7) in the case of arbitrary
spatial dimension .

For the special case of (0,7), for example

0,8) u'—Autudl=f

J. Sather [8] proved the existence of a global classical solution in the case <3
by giving suitable smooth initial data. His main method of the proof is largely
depending on the monotonicity of the term 3.

However, D. Sattinger [9] introduced the idea of “potential well” and applied
to a equation which has no monotonicity condition, for instance,

0,9 w'"—Au—u*=0 (n=3)

and proved the global existence of a generalized solution. Roughly speaking,
his result is that if the initial data are sufficiently smooth and have suitable
small norm, then the Initial-Boundary Value Problem for the equation (0,9) has
a global generalized solution.

Quite recently M. Nakao and T.Nanbu and Y. Ebihara [7] succeeded to obtain
a global classical solution for the equation of type (0,9) with nonzero energy
source function by the method of compactness of successive approximating
solutions and the idea of “potential well”.

In this paper we shall prove the global existence of classical solutions of the
Problems (1) and (2) by giving initial values which are sufficiently smooth and
have suitable small norm. The main method of reasoning in the paper is the
estimation of successive approximating solutions by choosing a suitable bases
(¢f.[2]1) and a simple differential inequality obtained from the original equation.

For example, it is shown that the equation

(0,100 "' —Au+Ta'+C(a')*=0 (>0, —co<C <o)

has global classical solution in the arbitrary spatial dimension n. It seems that
the idea of “potential well” is not applicable to obtain classical solutions for
equations of type (0,10).

This paper has three sections apart from this section. In §1, we give the
auxiliary concepts and state some existence theorems. In § 2, we make the proof
of the theorems in §1 and give some examples. In §3, we generalize our results
to general second order evolution equations and at the end we note some remarks
for the first order evolution equations.

§1. Lemmas and Theorems

Throughout this paper we assume the function spaces considered are all over
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real field. The notations are as usual (e.q. Lions [3], Mizohata [6]). Now
at first we mention some lemmas without proof which will be used later.

Lemma 1. (Sobolev)
Let u, v belong to H*(82), then (u)?-(v)? belongs to H*(R) and it holds that

1) ?2(0) | aee) =Cla, p, g, 2 {|lull =} 2 {||v]| =y} @

where a is a positive integer with a:;li-é—]—l—l, and p,q are positive integers.
Lemma 2.

[£1+1+2mp
Let p, m be positive integers and R be CL2 ~class bounded domain in
R*. Let LCD}:[aé‘—‘é’m A.D? (A,=R) with the domain P(L(D))={plx)c

H7(2); L(D)p(x)ELXD)} be uniformly elliptic in & and coercive on H™(2)
i.e., there exists a positive constant C such that for (06[%’”(.9),

(LD)¢, 9> =Cllg|[f=coy.
Then L?(D) with the domain {p(x)eHm(Q); Lr(D)o(x)eL (D)} is also
coercive on ISI’”P(.Q).
We can easily verify this Lemma 2 by the method of induction with respect
to p.
Lemma 3.
If a nonnegative function f(t) belonging to C[0,T) satisfies

FOSFOI-To+CU D}T  for 10, T)
ro<(2)”

with nonnegative function F(t) which belongs to C°[0, T) and with positive cons-
tants 1o, C,p, then f(t) should be non-increasing function, therefore, it follows
that f(O)=f(&) for any t=(0,T).

Although this Lemma 3 is obvious, it is widely applicable in the global
estimations of the energies of equations of evolution.

The following Lemma 4 plays the most essential roles in this paper. (The
proof of this lemma was given in [2].)

Lemma 4.

Let H be a separable Hilbert Space and {u,(t)} be a sequence of mappings
up(2): [0, T1—H satisfying

(i) sup sup |lup@®llg<+oo
p tefo, T]

(ii) For any t,t,€[0,T], there exist positive constants K,h (0<h<1)
independently of p such that
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s (t:) — 2Dl < K|ty —15]"
then there exist a subsequence {up,(t)} of {up(®)} and u(t) which belongs to

E, TiLH] such that
up, (&) — u(2) (w) in H
and the convergence is uniform in t. Where (w) means the weak one as usual.

In this paper we call the numbers 7 of (0,1) and 7; (i=0,1) of (0,4)
“dissipative coefficients”.

In general the classical solutions of (1) and (2) can not exist globally in 2
and even if they exist globally, they are not always uniformly bounded. Our
purpose is to find globally existing and uniformly bounded solutions (We call
them “non-growing solutions” in the paper.) of (1) and (2). For this aim, we
make two definitions.

Definition 1. A set ScCC(2)XC(2) is called a well posed set of the
Problem (1) if a pair of function {uy(«),u;(x)} belongs to S then the Problem
(1) with initial values {u(x), #;(x)} has a unique non-growing solution.

Definition 2. A set SCC(2)XCOU2)XCU(DXCU(R) is called a well
posed set of the Problem (2) if a set of functions {ug(x), (%)), ve(x),v(x)}
belongs to S, then the Problem (2) with initial values {uo(x),u ()} {vo(x),
v;(2)} has one and only one non-growing solution.

Now in the next, we make preparations to construct approximating solutions

for the Problem (1), (2).
Let us set a¢=[121—]—|—1, and for the brevity we put <{u, (—A)%v)>=(u,v), for

u,veﬁ“(ﬁ?) and {u, (—A)*">=((u,v)), for u,veIoI““(.Q), and (u, u),=|ul2,
(@, 2))a=|p|l%

Then from Lemma 2, |-]|., |||« define equivalent norms to the norms of the
spaces IZT“(.Q),IOI"‘“(.Q) respectively. From now on we identify |-|,,||-||. with
the norms of the spaces g “(.Q),IOI at1( ) respectively.

Here we put {¢;} as eigen functions of the operator (—A)?*3 whose domain
is Hav3(Q) N H2@+ (Q)

Since (—A)**8 is coercive on I°{“+3(!2), its Green operator is compact in
L2(8) and therefore {¢;} is to be assumed a complete base of H et3() (ef. [BD.

Now, we make assumptions for the terms f(«,%’) and f;(u,u’,v,v") (:=0,1)
in the Probems (1), (2) respectively.

1,1,1) f(u,v) belongs to C**2(R?) and satisfies

o |Cof G, 03, 0D SCloli- (ol + 2
for ueH*'(R), veH*(2)
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where the constants C,p are independent of u,v.
(1,1,2) For a(®) e, ILH**1(2) NEf, ILH*(2)], it holds that

___a__ 14 l4 II>
|(5rwirun,
for t=[0, T]. The constant C(M, N) depends on M >0, N>0 where M= max

tefo, T
lle(llay N= max |u/'(2)]a-
. tefo, T]

"|latlo'! |2}

(1,1,3) For u(t) &k mLE=(2)1NEY, 1LH*(2)] it holds that

Garercow.o) |2

for [0, T].
Here the constant C(L, M, N) depends on L>0, M>0, N>0, where

a0 |2}

L= max [[u(®lle;, M= max [[&'®l|le, N= max [&'(¢)]a-
telo, T telo, T] te[o, T]

1,2, fi(u,v,w,z) (z=0,1) belong to C**2(R*) and satisfy
|Cufo (et v, w, 2), 0) | S Colvla(llulla+ 0|2+ lwllz+|2| @)
|CafiCuy v, w, 2), 2) o <Cilzla(llullz+[v]a+wlla+ 2]

for u, w ISI"‘“(.Q), v,zEIo—Iff(.Q) where the constants C;, p; (i=0,1) are indepen-

dent of u,v,w,z.
(1,2,2) For u(®), ()&, TLE** (@ 1NED, TLE=(2)], it holds that
0 0
(2 twtfotas w0, ") (5 0FiCa 0,00, 07)
< CCMo, My, Noy N (Lo [+ a2+ 11013+ 073}

for t<[0, T]. Here the constant C(M,, M;, Ny, N;) depends on M;, N; where
M,= max [[u(Dlle, M= max [[v(Olls, No= max |u'(¥)|,, Ni= max [v/(&)l,.
tefo, T tel0, T] tefo, T tefo, T]

a

(1,2,3) For u(®),v()eCh, rlH* (2 1NEY TLH=(2)] it holds that

14 14 4 (3) / / (3)
(25 s, 0,000, u) (5 WFiCaal,0,00),09)
< (Mo, My, Noy Niy Ro, R {1+ 12+ 1 -+ 110134+ 1o |2

for t=[0, T]. Here the constant C(M,, M;, Ny, N, Ry, R;) depends on M;, N;, R;

where My= max |[u(Dlle, M= max |[v(lle, No= max |lu/(®lle, N;= max
telo, T tefo, T] telo, T] telo, T]

lo'Dlles Ro= max |u''(®)|s, Ri= max [v//(#)]q-
tefo, T tefo, T

Now we give the initial values in the following spaces.
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1,3) For the Problem (1), {zy(x), u;(x)} is given in the space IOI"‘“’(.Q)X
ISI“”(.Q).

(1,4) For the Problem (2), {uo(x),u;(x)}, {vo(x),vi(x)} are given in the
space ISI“”(.Q) XI;T“”(.Q).

Then we can find sequences of numbers satisfying

k el
1,5,1) 21 a;p;=up(0) —>u, (s) in He*+3(2)
i=
k (s}
(1,5,2) X bp;=ur(0) —> u, (s) in He2(Q)
=
E .
1,5,3) X} ajp;=vx(0) —> v, (s) in H2"3(Q)
J=1

W50 31 Bp=oh®—re () in H3(@)

where (s) means the strong convergence in these spaces.
Under these preparations, the approximating solutions are constructed as

k
follows. For the Problem (1), we put uz(#)= 3] 4z,;(#)¢; where the functions
J7=1
{Ar,;j(®} (j=1,2,---,k) are solutions of the system of ordinary differential
equations; .
Wk, 0D at ((ry @) a+ Wb {7 +FCun, ub)}, 00 =0 (j=1,2, -, &)
i@ =aj, I;(0)=b; (j=1,2,-, k)

As is well known from the theory of ordinary differential equations, {1, ;(£)}
exist in some interval [0,dz) where §,>0 depends on %, and since f(-,--) is
smooth ((1,1,1)), {4z,;(®} belong to C*[0,d.). (cf.[5D

k o
Hence ur(t)= Y] Az, ;(#D¢; belongs to Efo, s H*3(Q)].
Jj=1

1 {

More precisely uz(z) should belong to &fo, ak)[I;""*?’(.Q) NC=(2)] from the

ellipticity of (—A).
k : E
Similarly, for the Problem (2), we put #;(¢)= Zl,uk,j(t)(oj, NOEPININ OIS
7= =1
where the functions {ug,;(©)}, {ve,;@®} (j=1,2,---,k) are solutions of the
system:
{(u;e,, goj)a"*— ((uk’ ¢j))a + (u],? {TO+.ﬁ)<uk, ul’% Uk, vl’e>} ’ (0.7')0::0
(vllely ¢j>a+ ((Uk, ¢j>>a+ ('Ul,e {71 +ﬁ(uk3 u;?; Vg, ’l);a)} ) (Df)a:o

tr, ;O =aj;, uhi@=0b; vp;i0)=aj; vii(0)=8;
(j::]-’z’ ."Qk)

Then we know {u(2),v:(2)} belong to &, n)[ﬁ“”([))] for some interval [0, £2).
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Now we have the existence theorems.

Theorem 1.

If the solutions {up(¢)} of the Problems (1)’ exist in the interval [0, 7]
independently of k and satisfy

sup sup {Jut(®|o+|lur®|la} <+o0
k ts[0,T]

then the Problem (1) has one and only one classical solution in [0, T].
Theorem 2.

If the solutions {(up(2),vr(t))} of the Problems (2)' exist in the interval
[0, T] independently of k and satisfy

sup sup {[uk(®)]a+10e() o +luza(®lla+102(Dla} <+oo
E telo, T]

then the Problem (2) has unique classical solution in [0, T].
Remark The local existence is known by Y.Ebihara [2].
Theorem 3.
If the dissipative coefficient T is positive, then the Problem (1) has a non-
trivial well posed set. »
Theorem 4.
If the dissipative coefficients T; (i=0,1) are positive, then the Problem (2)

has a non-trivial well posed set.
§2. Proofs of the Theorems and Examples

(A) Proof of the Theorem 1.

At first we prove the existence of a classical solution.
From the assumption

@D sup sup {|uk(®)|o+llua(Dlle} =M< +oo,
k telo, T -

uz(2) belongs to &, T][IOI"‘”(,Q)] for every k.
Now by differentiating the equality of (1)’ with respect to ¢, and summing
over j from 1 to % after multiplying A%z ;(¢), we have for :=(0, T']

14

7 ar ek i*”“fe”iH(% »{u£{7+f(uk,ué)}},w’e’) —0.

44

Then it follows from (1,1,2) that

d
—5 Uk e+ lluklla} <2 COMy, N {1+ lukllet |k |

where
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M,=sup sup |lux(®Dlle,  Ny=sup sup |uk(®)|,
k tefo, T] k t<[0, T]

Thus we aobtain for £<[0, T']
|uk! (&) o+ |ur(ONa=<C1(M;, Ny, T)+Cs(M;, Ny, T {lut (0) |2+ ||uk(OII3},
where C; (i=1,2) depends on M;, N,, T.
Here we show the boundedness of {||u£(0)]|Z} and {|«k (0)|3}.
From (1,5,2), the boundedness of {||«£(0)[3} is obvious.
In the equality of (1)’ we have as t—0
(k' €00, @)+ (0D, @)+ h(0) {7+ Cur(0), wh(OD}, .90 =0

and therefore it follows that
26k (0)] o <[ (—A)2r(0) | o+ [£(0) {7 + F(r(0), u£(0I)} |

Since #£(0) —>uy (5) in Hev3(@), wh(0) —> 2, () in H*2(2) ((1,5,1), (1,5,2)),
{llee£CO) || =y}, {lleek(0)|| Ho+2c@y} are bounded and hence {|(—A)ur(0)]a} {lux(0)
{r+ f(uk(O),u('e(O))} |} are bounded. In fact, from Sobolev imbedding theorem,
the boundedness of {|#x(0) |} and {|u:(0)|pc2)} follows irﬁmediately and there-

fore supremums of

(XY
aX’l@Y’2 A ) X=u(0), Y=u}(0)
with 0<I=1[,+1;<a are bouned as a matter of course.
Thus for |a|=3a;Ze, {|D?{f(ur(0), ut(0))ut(0)} |22y} are bounded.
From these facts, it yields the boundedness of the right-hand side of the last

inequality.
2,2) sup sup_ Hul’e(t)lla<+00
k te[o, T
(2,3) : sup sup Iuk (D] eg<+oo

In the next, after differentiating equality of (1)’ two times we have as above
for t=(0, T,

1 d
2 dr

Therefore from (1,1,3) and (2,1)~(2,3) it holds that

(ko 1)+ k- Can, )}, ) =0,

L ul? 1) S2CCM, Ny, Ly (L o 2}

and thus we get for t<[0, T],
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|ur” (@) o+ lk! (DIZ=C1(My, Nu, L, T) +Co(My, No, L, T - {|® (0) |2
+ ek (0112}
where C; (i=1,2) depends on M,, N,, L, T with

Ny=sup sup |[[uk(®)lla, L=sup Sup, luk ®la
k te[o, T]

Therefore if we could show the boundedness of {qu’(O) 12} and {||u4 (0)]3}

we have
2,9 sup, sup ek’ ()| a <400
2,5) sup sup s ()| <+ 0.

k tes[o, T

At first we obtain as #—0 for the differentiated equality of (1)’,
0
l? (0, 090+ (D), 003 +( 7 (GO 17+ Cer(), k(DI om0, 05) =0

and from this, it holds that

0k O] S I~ AIh(O) | o (k2D {1+ Ced, b} Lo

From (1,5,2), we obtain the boundedness of {[(—A)u%(0)|,}.
Using our result (2,3) in the case £=0 and (1,5,1), (1,5,2) we have the
boundedness of the latter term of this inequality from the same reason as a

previous one.
Secondly we show the boundedness of {||#}/(0)]|2} where kI is the last index
which satisfies 4
@1, @2, s P> =V (g, A3, -+, Ap)
here <--+) is the totality of linear combinations and V(:--) means the direct sum

of eigen spaces of 4y, 4, -+, 4.
We noted that from ellipticity of A, {¢;} belong to I?{““?’(.Q)/\C‘”(‘Q), and so

if ¢ belongs to @i, ¢, -+, ¢r,>, We have
APELQL, 2, -5 Prad-
Therefore it follows that
—Afuk (0} <01, @2, -+, Pr>, and
we may substitute —A {u}, (0)} as ¢; in the equality of ()" as t—0. That is,
it holds,
(uz1(0), —A{ui; (00} o+ ((ury (0), — A {2, (0)})) e
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+ @ (O {7 +f (ury (0, uy (0}, — A {ur (00} ) =0

and thus, it follows that
a+3 a+2

et ONa=Z[(—A) % ug(O)|zacay+1(—A) 2 {uh (0) {7+ ety (0D, by (0D} } |22

The right-hand side of this inequality is bounded again by (1,5, 1), (1,5,2).

Consequently we have the boundedness of {||z4 (0)]||2}. k

From the results (2,1), (2,2), {ur(¢)} satisfy the assumption of Lemma 4 in
the space ISI““(.Q) with A=1 and by combining (2,2) and (2,4), {ut(#)} satisfy
the condition in the space I—OI““(.Q) and by (2,3) and (2,5), {u}/ ()} satisfy in the
space ISI"‘(.Q).

Therefore by choosing a suitable subsequence {u(#)}, there exists u(z)

which belongs to &, TILH**(2)1nEh, TILH*(2)] such that
Ure®==u(®) (W) in H(Q)
2,6 uh(D=='(®) (@) in H(Q)
uh(O==u""(t) (w) in H**()
where = means uniform convérgence in Z.

Moreover, since the spacé Eh, T][I-?I““(.Q)] is compact in the space &, 7]
[ISI“(Q)] (by a generalization of Rellich’s Theorem), we can assume that

un()—>u(®  in Eh, mHAD]
because of the result (2,4).
Therefore we may have for &[0, T],
o) 1T+ Ctng(), ho (D} —> o/ ) 7+ £ (), ' (8D} in FH=(Q).
Hence u(2) satisfies for any ¢;= {¢;},
@ @), ¢)at (@), 00 a+ @' O+ (w(@),w’ D}, ¢).=0

for t=(0, T']
u(D=uy,, u'(0)=u;.

Thus «(¢) satisfies
w’ () —Au() +u’' @ {1+ (u(®), ' ()} =0
for every t=(0,T] (and for a.e.x in 2).
The ellipticity of A yields that u(z) should belongs to &%, m[H*+(Q2)
AH*2(Q)1NEho, LH* (1N ER, TiLH*(2)], because «’'(¢), and f(u(s),u' ()

are the functions in &, T][I-?I“(.Q)].
Consequently, we can see that «(x, ) is a classical solution of the Problem (1).
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Secondly we prove the uniqueness.
Let u(2), U(2) be classical solutions with the initial values {uo(x),u;(x)},
{Up(x), U, (%)} respectively.
Then the functional .
e@=(W'@), WD+ (—AW@), W) r«o
where W()=U()—u(t), satisfies
'@ =2{(W" @), W (D rxa+(—AW(), W ()L«
==20W@E+U' @O LU, U @) —u' @ f (u@),u (@), W (&) rxe
==27(W(®), W(@®))r«2 '
=20’ U@, U @) =o' @) f (u(@), u' (), W (2))Lx@).

Since f(-,--) is smooth, by mean value theorem, we have

vf (u, v) —zf(w, 2) =F(u, v, w, 2) {(u—w)+ (v—2)}
where F(u,v,w,z) is a continuous function of u,v,w, z.

Therefore, it follows that

e'@)==27w),w @)«
—2(FCU@®, U@, u®),w’ OI{WE+ W)}, W (&) rxe
=22|T| W@ x| W (@) | Loy

+2Co(U, U, w, w") - {| W) | 22cap| W' () | xcar+ | W () |}
where Co(U, U’,u,u’) is a constant depending on supremums in 2X[0, T'] of
U1, 10, L, 1)
Consequently, we have for z&(0, T']
¢’ (8) Zconst {| W(D) |z +| W (@) |22}
<const{| W' (&) |Zx@)+ (—AW(), W) x>}
=C10(2)
Thus we have for t=[0, T,

P () =eTp(0).

this shows the solution of the Problem (1) is unique.
This completes the proof of the Theorem 1. (q.e.d.)
(B) Proof of the Theorem 2.
The procedure of the proof is completely similar to the one of the Theorem

From the assumptions

(2,7) L=sup sup {|ur(®)]o+10k(O et |1ur(®lla+lor(®)]la} <-+oo
& telo, T
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and (1,2,2) we have by differentiating equalities of (2)’ and substituting
ufes)(t),vfe‘j’)(t) as ¢, and summing them,

14

2 dt

S CCL) {1+ |uk |3+ |0k |+ [kl |G+ [[vR]|a}

{luk |5+ |0k |2+ |luk()|a+lok(O] |2}

for t=(0, T].
From this we have

(2,8) M=sup sup {lu(@®]i+]o @i+ luk(D|z+lvk(®)la} <+oo
k t<lo, T]

by checking the boundedness of {|u&'(0)[n}, {[oF (O]}, {luk(Ola}, {I0CO)]la}-
And further we know
(2,90 N=sup sup {Jut @®)|a+ |0k Ola+1lahl(®|a+loki(O]|Z} <+oo
kl tefo0, T]

by using (1,2,3), and (2,7), (2,8), where &l is the number defined in the proof
of the Theorem 1.

Consequently, we get a pair of functions {«(#), v(2)} which solves the problem

2.
Secondly we put {u(t),v(®)}, {U@), V(¢)} be solutions with the initial
values {Cuy, u1), (vo, v1)}, {(U,, Uy, (Vo, Vi)} respectively and set

G@)=w@), w@))rxa+ (W), W)L«
+(—Aw(@), w(®)) L+ (—AW(@), W(2))r«e
where w()=U@)—u(t), W&)=V(®#)—v(), then we have the following
inequality by the same way of the proof of the Theorem 1.
¢’ () <const-¢(t) for =0, T1.

Uniqueness follows immediately from this. (g.e.d)
(C) Proof of the Theorem 3.

Let us set
L
S= { fu, 0} € o +3(2) x Her2(@)| [lul2+ ]y1§<<_z;_)p}

where C, p are the constants in (1,1, 1).

Now we verify S is a well posed set of the Problem (1).

If {uo,u;} belongs to S, {#r(0),ur(0)} belongs to S for sufficiently large
number £=>%, from the continuity of the functional |lus|z+|vsl5

And therefore we have for the solutions {uz(z)} (k=k,) of the Problems
(1)’ by a simple calculation,
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J;%<:uzr§+nuku?agmw’eli{-—r+c<1w’enz+nuknz>ﬂ}

2,10 for t=(0,6)

1
1(Iu£(0)li+llug(0)l|§) <(%)p.

Consequently by Lemma 2, it follows that {zz(#)} should exist in the interval
[0, o0) and satisfies for arbitrarily fixed positive number T,

1
(2,10 sup sup (kD +lua@IB <(L )
k=k, t<[0, T]

Thus by the Theorem 1, we have a function u#(#) which solves the Problem
(1) in [0, T] and from the uniqueness and the arbitrariness of T, we can extend
the existence interval to [0, o).

This completes the proof. (qg.e.d)

(D) Proof of the Theorem 4. )

In the assumption (1,2,1), we may assume that py,=p;, and we put ¥=min
{ro, 71}, C=max{C;, Cs}.

Now let us set

W= {c{ul, ws}, oy, v} € (HIw3(Q) x Ea+2(2))

X (H*+9(2) X He2(2))]
lloaglla+ lugla+ o) |a—+ 220 {1+ |oey | la+ 252+ 042
+ |vg|2)21=2} <%}
then we can verify that W is a well posed set of the Problem (2).
In fact, if ({uo, ui}, {vo, v1}) belongs to W it follows by the same as in (c)

that ({#z(0), uk(0)}, {v2(0), v£(0)}) belongs to W for sufficiently large number
k=>Fy.
Here we have from the equalities of (2)/,
Cul k) o+ (e, 4k)) o+ Vol ublat Cuk foCotp, wh, v, vR), ub) =0
{(vfe', 08) 0+ (0, 08)) o+ 11|08 3+ (Wh fi (i, b, vi, 08), Vh) =0
for t=(0,¢ez).

Thus by summing these equalities, and using (1,2,1), it holds,

d
T Clublt okl g3+ loal

< —Tolukla—11|vk|%+ Coluk|a(lukla-t |vkla—+llurl|a+||vrl2)) 20

+C, | vk 2wk 2+ | vk|2+ a2+ |ve] |22
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= (luklat |vkled (=7 + C(luklat [oklat[uella+|oglla)?s
X AL+ (|uckla+ [obl2+ sl 2+ oalli)p=2i} ).

Therefore for 2=k, {uzp(2),v,(t)} should exist in the interval [0, o) from a
generalization of Lemma 2 and they satisfy for any z&[0, o),

(kO 3+ oA 2+ a1+ o 1D+ ek (D2
+ 1A o+ a3+ loaDIDA— <,
and hence it holds that for any 7°>0,

1

sup  sup {ub(e) it Iok() i+ Ilus(OlE+loa(O1B) <( T P
]

k=k te[o, T

Conseqently by utilizing the Theorem 2 we can arrive at the conclusion.

(q.e.d)
Example 1.

uw'—Au+t+u' +=@)?=0
(p: positive integer with p>1)

For the above equation, the well posed set S is given by

o o 1 _i_
§={ o), 1, (@)} € H=9@) x B3 ol e <] 5055 | 77

where C(p) is the minimum constant which verifies for uEﬁI“(Q)
Ku?, (—A)*u)| <const [ulﬁ+1 (from Lemma 1).
Because, apriori we have‘
", (A U )+ —Au, (—A)*up+<u!, (—A)*u’)
=P, (—A)uy=0

andtherefore
d 712 21 — 712 7 p+1
Tl Bt B} = — o B CC 1

=2 {—1+C(PI! 157"}
=)
élu’li{—1+C<P)(Iu’li+llulla> }

From this we know that S is well posed.
Example 2.

u'’ —Autu' = (u)?(w)?=0
(p, q are positive integers)
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For the above equation the well posed set S is given by

Z > 2 2 1 2
S= { {uo(x), ul(-%')} EHa+3(.Q) XH“+2(,Q)| Huo”a'lfludzx<[im]ﬁ+q~l }

where C(p,q) is a minimum constant which verifies for uEI?I”‘*.l(Q), ve H« €
[<(@)2(2)9, (—A)*s>| <const|lul &]o|5*".
Example 3. |

w' —Au+u' (1 4ubo+v2 -+ (u' )70+ (v')50) =0
{v”—Av+v’(l +utr+ova+ (' )71+ (v')51) =0
(p;, qi, 73, 5; are positive integers)

For the above system of equations we can verify the existence of a well
posed set although we leave out the concrete form.

Remark 1. One can easily confirm that these nonlinear functions appeared
in the examples satisfy the assumptions (1,1,1)~(,1,3) or (1,2,1)~(1,2, 3).

Remark 2. Though we treated the equations with the nonlinear functions

of u,u’, we can also verify the same results obtaned above for the functions of
u,u’,Vu by giving same assumptions.

§3. Generalization

In this section we consider the Initial-Boundary Value Problems:
uw’+L(D)u—u'{v+f(u,Du, -, D"u,u’)} =0 in £x (0, o)
3) u(x, ) =u(x), ' (x,0)=2u;(x) in £
Dﬂulag=0 (BIEm—1) for [0, o)
{u,’+L(D)u+ul {7‘0+.ﬁ)<u’ Du’ ) Dmu’ u,: v, DZ), T Dmv, v’)} =0
v+ L(D)v+v' {11+ fi(u, Du, ---, D"y, v, v, Dv, ---, D%p, v")} =0
(4) in £x(0,)
\{u(x, 0) =12,(%) . {v(x, 0) =v,(x)

u’ (x,0)=2u,(x) v’ (%, 0)=v;(x)
DB8ulog=DP8plag=0 (|B|<m—1) for z<[0, o).

in £

where L=L(D)= 3 a3D? is a uniformly elliptic and coercive operator on
o BlZem

IOI’”(.Q) with constant coefficients, and f, f; satisfy same conditions as (1,1,1)~
1,1,3) and (1,2,1)~(1,2,3) respectively. We shall omit to write out them.

Here we put p as a minimum integer with

mpgl:gil-l-l:a.
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3
For the Problem (3) we construct approximating solutions {uk(t) = Zi Ar,; (D¢ j}’
]=
by
Kuk , LG+ Lup, LPG > +<uk{r + ()}, L2¢g;>=0
(3 : Lo
ur(0)= j§ a;j;, ur(0)= ]gl Bi¢;

where {¢;} are eigen functions of L?*3(D) and
u(—>uy () in H™#9(Q)
W(D—> 2y (5)  in Hm@+(Q).

3
For the Problem (4), we give approximating solutions {uk(t)z 23 ur, ; (B,
=
3
040 = 314,105} by

{<”2,, L2¢g;>+{Lu, L2g ;) +<uk {To+ o)}, LP¢>=0
vk, L2y < Log, LP¢p +<oe {11+ ACD}, LPg;>=0
(j:l’ 2, Tty k)

@’ k , E 2
up(0)= J_;; a;di,  ur(0)= ]Z]I Bi¢ji, vr(0)= jgl d;g;,
k
ve(0)= Dlejd;
i=1
where

w(O—uy () in Hmo0(Q)
uk(D)—>u; (s in EIm+ @
o ()—>2v, (s) in Em@9(Q)
vh(0)—v; () in Hm@e(Q)

Then we can prove the following theorems by the analogous arguements in
the previous section.

Theorem 5.

If the solutions {up(£)} of (3)' exist in [0,T] independently of k, and
satisfy

sup sup {uk, LPuty+<{up, L 1u,d} < +oo
k t<[o, T]

then we can find one and only one function which solves the Problem (3).
Theorem 6.
If the solutions {urp(2),vr(2)} of (4)' exist in [0, T] independently of k, and
satisfy
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sup sup {cuk Louby+ <ok, LP0ky +ap, L2 upy +og, L2z} < + oo,

k tefo, T

then we can solve the Problem (4) uniquely.

Theorem 7.

@ If the dissipative coefficient T is positive, then we have a non-trivial well
posed set of the Problem (3), and

@ if the coefficients 7; (i=0,1) are positive, then we have a non-trivial
well posed set of the Problem (4).

Now in the next, we are concerned with the first order evolution equations.
Though the global existence of classical solutions of the Initial-Boundary Value
Problems of non-linear parabolic equations are known by the mothod of Green
function, giving positive initial values with small norm, we can also give the
proofs by the one introduced here giving suitable initial values which are not
always positive. ‘

For example, if we consider the problem:

w —Aut+u?=0 (p: any positive integer) in £ X (0, o)
(5) u(x,0)=1u, in 2
uloe=0 =0,

we can find its well posed set as follows.
Since

@ 1) o+ ((y u)) o+ (u?, u) =0

holds apriori, so it follows that

4 _
”Elulzé—”ullz-l-c(j))lulﬁﬂ

1
é—?'luli—l-C(P)]ulﬁH
0
1 -
= lula(=1+Co-C(Pula™,
0
here the constants Cy, C(p) are minimums which satisfy

lul2<const ju]2  for we=H**1(2)
|(u?, )] <const |u|‘:}+l for uElEI“(.Q).

Thus a well posed set is given by

S={uwec (@ lule<| 55 P)] tl.

Moreover we can find out well posed sets of the problems:;
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(6)

(7)

L1l
L2]

£31
4]
£5]
[6]
L7]
L8]
L9]
[10]

Y. Epinara

{u’—Au+uP0+1}QO A uro-pSo =)
[ v’—Av—}-uPl—]—le—l—uﬁ cp51=0
1u<x, 0)=uo(a), (,0)=00(2)

ulog=v|og=0

'+ L(D)u+f(u, Du,---, D" %) =0
u(x, 0) =u(x)
Dfulae=0  (|Bl=m—1).
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