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Structure and Characterizations of Certain
Continuous Flows

By Ronald A. KNIGHT

(Northeast Missouri State University)

1. Introduction.
Ahmad [1] introduced and classified planar flows of characteristic $0^{¥pm}(0^{-})$

in terms of their critical points and he characterized planar flows of characteristic
$0^{¥pm}$ in terms of their critical points. The author [6], [7] characterized planar
flows of characteristics $¥mathrm{o}¥pm$ , $0^{-}$ , and 0 in terms of their critical points. In [2]
Ahmad classified flows of characteristic $¥mathrm{o}¥pm(0^{-})$ on locally compact phase spaces.
The purpose of this paper is to characterize and study the structure of flows of
characteristic 0 on Hausdorff phase spaces.

2. Basic Definitions.
A pair $(X, ¥pi)$ consisting of a topological space $X$ and a continuous mapping

$¥pi$ from the product space $X¥times R$ into $X$ where $R$ is the usual real space is called
a dynamical system or (continuous) flow whenever the following conditions are
satisfied.

1. $¥pi(x, 0)=x$ for each $x¥in X$.

2. $¥pi(¥pi(x, t), s)=¥pi(X, t+s)$ for each $x¥in X$ and $t$ , $s¥in X$.
3. $¥pi$ is continuous on $X¥times R$ .

We denote $¥pi(x, t)$ by $xt$ for brevity and call $X$ the phase space. Throughout
this paper, the phase spaces will be Hausdorff spaces.

We denote the (positive, negative) trajectory through $x¥in X$ by $(C^{+}(x), C^{-}(x))$

$C(x)$ and $K^{+}(x)=¥overline{C^{+}(x)}$ , $K^{-}(x)=¥overline{C^{-}(x)}$ , and $K(x)=¥overline{C(x).}$ The (positive, nega-

tive) limit set is denoted by $(L^{+}(x), L^{-}(x))L(x)$ . The (positive, negative)
prolongation and (positive, negative) profongationaf limit set are denoted by
$(D^{+}(x), D^{-}(x))D(x)$ and $(J^{+}(x), J^{-}(x))J(x)$ , respectively.

We let $¥Re(x)$ and $¥mathfrak{R}(M)$ denote the neighborhood filters of $x¥in X$ and $M¥subset X$.
A set $M¥subset X$ is called positively stable if for every $U¥in¥Re(M)$ there exists a

$V¥in’¥Re(M)$ such that $V=C^{+}(V)¥subset U$, A point $x$ in $X-$ is positively (weakly)

attracted to $M¥subset X$ if the net (xt) for $t¥geq 0$ is (frequently) ultimately in each
neighborhood of $M$. If the set $A^{+}(M)(A_{w}^{+}(M))=¥{x:x$ is positively (weakly)

attracted to $M$} is a neighborhood of $M$, then $M$ is called a positive (weak)
attractor. We call $M$ positively asymptotically stable when $M$ is both positively
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stable and a positive attractor. The corresponding negative and bilateral versions
of the terms above are defined similarly. For brevity, we shall drop the adjec-
tive “positive” from the four terms defined above.

A flow $(X, ¥pi)$ is called (negatively, bifateralfy) dispersive if $(J^{-}(x)=¥phi$,
$ J(x)=¥phi)J^{+}(x)=¥phi$ for each $x¥in X$. A point $x$ in $X$ is called nonwandering if
$x¥in J^{+}(x)$ . A point $x$ in $X$ is said to be (positively, negatively) Lagrange stable
if and only if $(K^{+}(x), K^{-}(x))K(x)$ is compact. We call a point $x$ in $X$

(positively, negativefy) Poisson stable whenever $(x¥in L^{+}(x), x¥in L^{-}(x))x¥in$

$L^{+}(x)¥cap L^{-}(x)$ . A point $x$ in $X$ is called recurrent if and only if for any $V¥in ¥mathfrak{R}(x)$

there is a $t¥geq 0$ such that $ V¥cap y[0, t]¥neq¥phi$ for every $y¥in C(x)$ . A set $M¥subset X$ is said
to be (positively, negatively) minimal if and only if it is closed and is (positi-

vely, negatively) invariant and contains no nonempty proper subset with these
respective properties.

For the basic properties of dynamical systems used in this paper we refer to
[4] and [5].

3. Flows of Characteristic 0.
A flow $(X, ¥pi)$ is said to be of characteristic $0^{+}(0^{-})$ if $D^{+}(x)=K^{+}(x)$

$(D^{-}(x)=K^{-}(x))$ for each $x$ in $X$, or equivalently, if $J^{+}(x)=L^{+}(x)(J^{-}(x)=$

$L^{-}(x))$ for each $x$ in $X$. A flow having characteristics $0^{+}¥acute{¥dot{¥mathrm{Q}}}¥mathrm{n}¥mathrm{d}0^{-}$ is called a
flow of characteristic $0^{¥pm}$ . We say $(X, ¥pi)$ has characteristic 0 whenever $D(x)=$

$K(x)$ for each $x$ in $X$.
Proposition 1. Let $(X, ¥pi)$ have characteristic 0. Then $(X^{¥prime}, ¥pi^{r})$ has charac-

teristic 0 ivhere $X^{¥prime}$ is an invariant subset of $X$ and $¥pi^{r}=¥pi|X^{¥prime}$ .

Proof. Let $x¥in X^{¥prime}$ . Then $ D^{¥prime}(x)=J^{¥prime}(x)¥cup C(x)¥subset(J(x)¥cap X^{¥prime})¥cup C(x)¥subset$

$(K(x)¥cap X^{¥prime})¥cup C(x)=L^{¥prime}(x)¥cup C(x)=K^{¥prime}(x)$ .

Proposition 2. The following are equivalent for a flow $(X, ¥pi)$ .

(a) $(X, ¥pi)$ has characteristic 0.

(b) For each $x¥in X$, $J^{+}(x)=J^{-}(x)=¥{_{¥phi}^{K(x)}$
.

(c) For each $x¥in X$, $J^{+}(x)=J^{-}(x)=¥{_{C(x)}^{L(x)}$
.

Proof. We first show that (a) implies (b). Let $ J^{+}(x)¥neq¥phi$ for some $x¥in X$.
If $y¥in J^{+}(x)$ , then $x¥in J^{-}(y)¥subset D(y)=K(y)¥subset J^{+}(x)$ . Hence, $K(x)¥subset J^{+}(x)$ . Since
$J^{+}(x)¥subset D(x)=K(x)$ , we have $J^{+}(x)=K(x)$ . Furthermore, $x¥in J^{+}(x)$ implies
$x¥in J^{-}(x)$ , and hence, $K(x)¥subset J^{-}(x)¥subset D(x)=K(x)$ . Similary, $J^{-}(x)¥neq¥varphi|$ for some
$x¥in X$ implies $J^{+}(x)=J^{-}(x)=K(x)$ . Finally, whenever $ J(x)=¥phi$, $J^{+}(x)=J^{-}(x)=$
$¥phi$ .

Next, we show that (b) implies (c). If $ J^{+}(x)=J^{-}(x)=¥phi$ for some $x¥in X$,
then $J^{+}(x)=J^{-}(x)=¥phi=L(x)$ . If $ J(x)¥neq¥phi$ and $K(x)=C(x)$ for some $x¥in X$, then
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$J^{+}(x)=J^{-}(x)=C(x)$ . If $ J(x)¥neq¥phi$ and $K(x)¥neq C(x)$ for some $x¥in X$, then $ L(x)¥neq$

$¥phi$ . Furthermore, for $y¥in L(x)$ we have $ x¥in J(y)¥subset D(y)=C(y)¥cup K(y)=K(y)¥subset$

$L(x)$ since $J(y)=K(y)$ . Thus, $J^{+}(x)=J^{-}(x)=K(x)¥subset L(x)$ , and hence, $J^{+}(x)$

$=J^{-}(x)=L(x)$ .
Finally, we show that (a) follows from (c). For any $x¥in X$, $D(x)=$

$C(x)¥cup J(x)¥subset C(x)¥cup L(x)=K(x)$ . Hence, $D(x)=K(x)$ .

Proposition 3. Let $(X, ¥pi)$ have $ch¥dot{a}racteristic0$ . If $L^{+}(x)¥neq¥phi(L^{-}(x)¥neq¥phi)$

for some $x¥in X$, then $J^{+}(x)=J^{-}(x)=L^{+}(x)(J^{+}(x)=J^{-}(x)=L^{-}(x))$ .
Proof. Let $y¥in L^{+}(x)$ for some $x$ in $X$. Then $y¥in J^{+}(x)$ and $ x=¥leftarrow J^{-}(y)¥subset$

$D(y)=K(y)¥subset L^{+}(x)$ . Thus, $J^{+}(x)¥subset D(x)=K(x)¥subset L^{+}(x)$ , and so, $J^{+}(x)=L^{+}(x)$ .

By Proposition 2, $J^{-}(x)=L^{+}(x)$ .

Corollary 3. 3. Let $(X, ¥pi)$ have characteristic 0. If $ J^{+}(x)¥neq¥phi$ for some
$x¥in X$, then

$J(x)=J^{+}(x)=J^{-}(x)=D(x)=D^{+}(x)=D^{-}(x)=K(x)$

$=¥left¥{¥begin{array}{l}K^{+}(x)=K(x)=L^{+}(x)¥mathrm{i}¥mathrm{f}L^{+}(x)¥neq¥phi.¥¥K^{-}(x)=K(x)=L^{-}(x)¥mathrm{i}¥mathrm{f}L^{-}(x)¥neq¥phi.¥end{array}¥right.$

Proposition 4. If $(X, ¥pi)$ has characteristic 0, then $L^{+}(x)$ is minimaf for
each $x¥in X$.

Proof. $L^{+}(x)$ is trivially minimal whenever it is empty. Let $y¥in L^{+}(x)$

for some $x¥in X$. Then $L^{+}(x)¥subset J^{+}(x)¥subset J^{+}(y)¥subset D(y)=K(y)$ , and hence, $K(y)=$

$L^{+}(x)$ . Thus, $L^{+}(x)$ is minimal (see 4. 15 of [4]).
Corollary 4. 3. Let $(X, ¥pi)$ be of characteristic 0 and $X$ be locally compact.

If $L^{+}(x)(L^{-}(x))$ is compact for some $x¥in X$, then $L^{+}(x)(L^{-}(x))$ is positively
and negatively minimal and each point of $L^{+}(x)(L^{-}(x))$ is recurrent.

Proof. See Theorem 4. 8 of [5] and Theorem 4. 22 of [4].
Proposition 5. For a flow $(X, ¥pi)$ of characteristic 0 with focalfy compact

phase space the following are equivalent for $x¥in X$.

(a) $L^{+}(x)$ is compact minimal
(b) $ L^{+}(y)¥neq¥phi$ for each $y¥in L^{+}(x)$ .
(c) $L^{+}(y)=L^{+}(x)$ for each $y¥in L^{+}(x)$ .

The negative limit set version also holds.
Proof. The equivalence of the statements follows trivially whenever $L^{+}(x)$

$=¥phi$ for some $x¥in X$. Let $ L^{+}(x)¥neq¥phi$ for some $x¥in X$. If $L^{+}(x)$ is compact, then
$ L^{+}(y)¥neq¥phi$ for each $y¥in L^{+}(x)$ (see 3. 6. 1 of [4]). Thus, (a) implies (b). If
(b) holds, then for $y¥in L^{+}(x)¥subset J^{+}(x)$ we have $x¥in J^{-}(y)$ . By Proposition 3,
$x¥in L^{+}(y)$ , and hence, $L^{+}(y)=L^{+}(x)$ . Finally, if (c) holds, then $x¥in L^{+}(x)=L^{+}(y)$

for each $y¥in L^{+}(x)$ . Hence, $L^{+}(x)¥subset A_{w}^{+}(x)$ and $L^{+}(x)$ is compact minimal (see
2. 4. 2 and 4. 6 of [5] $)$ .
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Corollary 5. 1. If $(X, ¥pi)$ is of characteristic 0 with locally compact phase
space and $L^{+}(x)$ is a nonempty compact minimal set for some $x¥in X$, then
$L(x)=L^{+}(x)=L^{-}(x)=K(x)=K^{+}(x)=K^{-}(x)=J(x)=J^{+}(x)=J^{-}(x)=D(x)=$

$D^{+}(x)=D^{-}(x)$ .

Corollary5.2. Let $(X, ¥pi)$ be of characteristic 0 with locally compact phase
space and $fet$ $L^{+}(x)$ be a nonempty compact minimal set for each $x¥in X$. Then
$(X, ¥pi)$ is of characteristics $0^{+}$ , $0^{-}$ , and $0^{¥pm}$ .

We give the following notation for convenience. For a flow $(X, ¥pi)$ we let

$M_{1}=$ {$ x:L^{+}(x)¥neq¥phi$ and $ L^{-}(x)=¥phi$},
$M_{2}=$ {$ x:L^{+}(x)=¥phi$ and $ L^{-}(x)¥neq¥phi$},
$M_{3}=$ {$ x:L(x)=¥phi$ and $ J^{+}(x)¥neq¥phi$}, and
$M_{4}=¥{x:L^{+}(x)=L^{-}(x)=J^{+}(x)¥}$ .

Theorem 6. Let $(X, ¥pi)$ have characteristic 0. The sets $M_{1}$ , $M_{2}$ , $M_{3}$ , and
$M_{4}$ are pairwise disjoint sets whose union is X. The restriction of the flow to

(i) $M_{1}¥cup M_{4}$ is of characteristics 0 and $0^{+}$ , and is of characteristics $0^{-}and$

$0^{¥pm}$ if and only if $ M_{1}=¥phi$ ,

(ii) $M_{2}¥cup M_{4}$ is of characteristics 0 and $0^{-}$ , and is of characteristics $¥mathit{0}^{+}and$

$0^{¥pm}$ if and only if $ M_{2}=¥phi$ ,

(iii) $M_{4}$ is of characteristics 0 and $0^{¥pm}$ , and
(iv) $M_{3}$ is only of characteristic 0 $provi^{p}ded$ it is not dispersive.

Proof. That $M_{1}$ , $M_{2}$ , $M_{3}$ and $M_{4}$ are pairwise disjoint sets whose union is
$X$ follows from Proposition 3 and its corollary. According to Proposition 1,
each restriction has characteristic 0.

Let $¥pi^{r}=¥pi|M_{1}¥cup M_{4}$. Then $J^{r+}(x)=L^{¥prime+}(x)$ for each $x¥in M_{1}¥cup M_{4}$ since $J^{r+}(x)$

$¥subset J^{+}(x)¥cap(M_{1}¥cup M_{4})=L^{+}(x)¥cap(M_{1}¥cup M_{4})=L^{r+}(x)$ . Hence, the restricted flow has
characteristic $0^{+}$ . Furthermore, for $x¥in M_{4}$, $J^{r-}(x)=J^{¥prime+}(x)=L^{r-}(x)$ and for $ x¥in$

$M_{1}$ , $ J^{r-}(x)¥neq¥phi$ while $ L^{¥prime-}(x)=¥phi$ . Consequently, the restricted flow does not have
characteristic $0^{-}$ or $0^{¥pm}$ if and only if $ M_{1}¥neq¥phi$ .

The proof of (ii) follows similarly and (iii) is a result of (i) and (ii).
Finally, if the flow $(M_{3}, ¥pi^{r})$ where $¥pi^{r}=¥pi|M_{3}$ is not dispersive, then it is not

negatively dispersive. In this case, since $ L^{+}(x)=L^{-}(x)=¥phi$ for each $x¥in M_{3}$ ,
$(M_{3},¥pi^{¥prime})$ is not of characteristics $0^{+}$ , $0^{-}$ , and $0^{¥pm}$ .

Corollary 6. 1. Let $(X, ¥pi)$ be of characteristic 0. Then $(X, ¥pi)$ has charac-
teristic $0^{+}(0^{-})$ if and only if $M_{2}=M_{3}=¥phi(M_{1}=M_{3}=¥phi)$ . Furthermore, $(X, ¥pi)$

has characteristic $0^{¥pm}$ if and only if $X=M_{4}$ .

Corollary 6. 2. $A$. flow $(X, ¥pi)$ of characteristic 0 with locally compact
phase space is of characteristic $0^{¥pm}¥backslash if$ and only if each nonwandering point is
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Lagrange stable.
Proof. Let $(X, ¥pi)$ have characteristic $0^{¥pm}$ and let $x¥in J^{+}(x)$ for some $x¥in X$.

Then $ L^{+}(x)=J^{+}(x)¥neq¥phi$ . For $y¥in L^{+}(x)$ we have $J^{+}(x)¥subset J^{+}(y)=L^{+}(y)$ so that
$ L^{+}(y)¥neq¥phi$ . By Proposition 5 and Corollary 5. 1, $K(x)$ is compact.

Conversely, if $ J^{+}(x)=¥phi$ , then $J^{+}(x)=J^{-}(x)=L^{+}(x)=L^{-}(x)$ . Let $ J^{+}(x)¥neq¥phi$ .

Then $J^{+}(x)=K(x)$ which is compact. Hence, $ L^{+}(x)¥neq¥phi$ and $ L^{-}(x)¥neq¥phi$ yielding
$X=M_{4}$ .

Corollary 6. 3. Let $(X, ¥pi)$ have a compact phase space. Then the charac $¥sim$

teristic $0^{+}$ , $0^{-}$ , $0^{¥pm}$ , and 0 properties are equivalent. Furthermore, in this case
$X=M_{4}$ and $K(x)$ is a compact minimal bilaterally stable set for each $x¥in X$.

Proof. The equivalence of the characteristic $0^{+}$ , $0^{-}$ , and $0^{¥pm}$ properties was
shown by Ahmad in [2]. Any flow of characteristic $0^{¥pm}$ is of characteristic 0.
Let $(X, ¥pi)$ be of characteristic 0. Then for each $x¥in X$, $ L^{+}(x)¥neq¥phi$ and $ L^{-}(x)¥neq$

$¥phi$ since $X$ is compact. Hence, $X=M_{4}$, and so, $(X, ¥pi)$ is of characteristic $0^{¥pm}$ .
The remainder of the proof follows from Proposition 5, Corollary 5. 1, and
Theorem 4. 7 of [2].

Corollary 6. 4. Let $(X, ¥pi)$ be of characteristic 0 where $X$ is metric and
either locally compact or complete. Then $X=¥overline{M_{4}}$ .

Proof. Let $X^{¥prime}$ be the closed set $¥{x:J^{+}(x)¥neq¥phi¥}$ (see 4. 2. 3 of [4]). Now
$L(x)¥subset X^{¥prime}$ for each $x¥in X$ since $y¥in L(x)$ implies that $x¥in J(y)$ . Thus, $ L^{¥prime}(x)=L(x)¥cap$

$X^{¥prime}=L(x)$ for each $x¥in X^{¥prime}$ . Also for any $x¥in X^{¥prime}$ , $J(x)=K(x)=K^{¥prime}(x)=J^{¥prime}(x)$ .

Each point of $X^{¥prime}$ is nonwandering so that the set $M_{4}¥cap X^{¥prime}$ of bilaterally Poisson
stable points is dense in $X^{¥prime}$ (see 4. 6 of [4]). Hence, $X=¥overline{M_{4}}$ .

Example. There are flows for which the sets $M_{1}$ , $M_{2}$ , $M_{3}$ , and $M_{4}$ are all
nonempty. Let $X$ be the union of the torus $Y$ and the plane $R^{2}$ . Define
$¥pi:X¥times R¥rightarrow X$ as follows. On $R^{2}$ define $¥pi$ by the system of differential equations

$¥dot{r}=-r^{2}¥sin¥theta$

$¥dot{¥theta}=1$ ,

$r¥geq 0$ (see Example 2 of [6]) and on $Y$ define $¥pi$ by the planar system

$¥dot{x}=f(x, y)$

$¥dot{y}=¥alpha f(x, y)$ ,

a irrational, where $f(x, y)=f(x+1, y+1)=f(x, y+1)=f(x+1, y)$, $f(x, y)>0$ if
$x$ and $y$ are not both zero $(¥mathrm{m}¥mathrm{o}¥mathrm{d} 1)$ , and $f(0,0)=0$ (see p. 56 of [4] and p. 33
of [3] $)$ . Let $p$ be the critical point on the torus. The flow restricted to the
locally compact phase space $X-¥{p¥}$ is of characteristic 0 and the sets $M_{1}$ , $M_{2}$ , $M_{3}$ ,

and $M_{4}$ are nonempty.

Theorem 7. Let $(X, ¥pi)$ be a flow with focaffy compact phase space. Then
$(X, ¥pi)$ is of characteristic 0 if and only if
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(i) each compact minimal set is bilaterally stable and
(ii) $J(x)¥subset K(x)$ for each $x$ not in a compact minimal set.

Proof. Let $(X, ¥pi)$ be of characteristic 0 and let $H$ be compact minimal.
Then $D(H)=¥cup¥{D(x):x¥in H¥}=¥cup¥{K(x):x¥in H¥}=H$ since $K(x)=H$ for each
$x¥in H$ (see 4. 15 of [4]). Hence, $H$ is bilaterally stable by Ura’s Theorem (see
2. 1 of [6] $)$ . Condition (ii) follows by Proposition 2.

Conversely, if $x¥in H$ where $H$ is compact minimal, then by Ura’s Theorem
we have $D(x)¥subset D(K(x))=K(x)$ since $H=K(x)$ , and hence, $D(x)=K(x)$ . On
the other hand, if $x$ is not in a compact minimal set, then $D(x)¥subset K(x)$ . In either
case $D(x)=K(x)$ . Therefore, $(X, ¥pi)$ is of characteristic 0.

Corollary 7. 1. Let $(X, ¥pi)$ be of characteristic 0 with locally compact phase
space. Each compact minimal set has a neighborhood of Poisson stable points.

Proof. Any compact minimal set $H$ has a compact neighborhood $N$ since
$X$ is locally compact. The bilateral stability of $H$ implies that there is an
invariant neighborhood $V$ of $H$ contained in $N$. For any point $x$ in $V$, $ L^{+}(x)¥neq$

$¥phi$ and $ L^{-}(x)¥mp$
.

$¥emptyset$ , and hence, each point of $V$ is Poisson stable.
Theorem 8. Let $(X, ¥pi)$ be a flow of characteristic 0 with locally compact

phase space. A closed connected invariant set $M$ with compact boundary is either
a component of $X$ or is not isolated from nonempty compact minimal sets.

Proof. Suppose $M$ is a closed connected invariant set which is not a com-

ponent of $X$. Since the boundary of $M$ is a compact invariant set, $ L^{+}(x)¥neq¥phi$

and $L^{+}(x)¥subset¥partial M$ for each $x¥in¥partial M$. Thus, $¥partial M$ is the union of compact minimal
bilaterally stable sets by virtue of Proposition 5 and Theorem 7, and hence, $M$

is bilaterally stable. Since $X$ is locally compact and $¥partial M$ is compact, there is a
compact $V¥in¥Re(¥partial M)$ . Let $U¥underline{¥in}¥mathfrak{R}(M)$ . The bilateral stability of $M$ implies that
there is an invariant set $W¥in¥Re(M)$ such that $C(W)¥subset U¥cap(V¥cup M)$ . For every
$x¥in W-M$, $L^{+}(x)$ is nonempty compact minimal. Thus, $M$ is not isolated from
nonempty compact minimal sets.

Proposition 9. Let $(X, ¥pi)$ be a flow of characteristic 0. Then for each
$x¥in X$,

$A_{w}^{+}(L^{+}(x))=L^{+}(x)$ , $A_{w}^{+}(L^{-}(x))=L^{-}(x)$ , and $A_{w}^{+}(C(x))=K(x)$ .

Proof. If $ L^{+}(x)=¥phi$ for some $x¥in X$, then the first equality follows trivially.

Let $ L^{+}(x)¥neq¥phi$ for some $x¥in X$. Since we already have $L^{+}(x)¥subset A_{w}^{+}(L^{+}(x))$ , let
$y¥in A_{w}^{+}(L^{+}(x))$ . Either the net (yt) is frequently in $L^{+}(x)$ or $ L^{+}(y)¥cap L^{+}(x)¥neq$

$¥phi$ . If (yt) is frequently in $L^{+}(x)$ , then $y¥in L^{+}(x)$ . If some point $z$ is in
$L^{+}(y)¥cap L^{+}(x)$ , then we have $y¥in J^{+}(z)=L^{+}(z)¥subset L^{+}(x)$ . Thus, $ A_{w}^{+}(L^{+}(x))¥subset$

$L^{+}(x)$ . We can obtain $A_{w}^{+}(L^{-}(x))=L^{-}(x)$ similarly.
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Finally, if $ L^{+}(x)¥neq¥phi$ for some $x¥in X$, then $A_{w}^{+}(C(x))¥subset A_{w}^{+}(L^{+}(x))=L^{+}(x)=$

$K(x)¥subset A_{w}^{+}(C(x))$ . Similarly, $ L^{-}(x)¥neq¥phi$ yields $A_{w}^{+}(C(x))=K(x)$ . Let $ L(x)=¥phi$ .
Either $J^{+}(x)=J^{-}(x)=C(x)$ or $ J^{+}(x)=J^{-}(x)=¥phi$ . First, suppose that $J^{+}(x)=$

$J^{-}(x)=C(x)$ . Then for each $y¥in A_{w}^{+}(C(x))$ we have $J^{+}(y)¥subset C(x)$ since
$J^{+}(A_{w}^{+}(C(x)))¥subset J^{+}(C(x))=J^{+}(x)=C(x)$ (see 2. 19 of [5]). If $ J^{+}(y)¥neq¥phi$ , then
$y¥in J^{+}(y)¥subset C(x)$ . If $ J^{+}(y)=¥phi$ , then $ L^{+}(y)=¥phi$ and (y) is frequently in $C(x)$ .

Thus, $A_{w}^{+}(C(x))¥subset C(x)$ , and hence, $A_{w}^{+}(C(x))=C(x)=K(x)$ . Next, suppose

that $ J^{+}(x)=J^{-}(x)=¥phi$ . Then $ L^{+}(y)=J^{+}(y)=¥phi$ for each $y¥in A_{w}^{+}(C(x))$ since
$ J^{+}(A_{u}^{+}|(C(x)))¥subset J^{+}(C(x))=J^{+}(x)=¥phi$. Thus (y) is frequently in $C(x)$ for each
$y¥in A_{w}^{+}(C(x))$ implying that $A_{w}^{+}(C(x))=C(x)=K(x)$ .

Corollary 9. 1. Let $(X, ¥pi)$ be of characteristic 0. Then $A^{+}(L^{+}(x))=L^{+}(x)$ ,
$A^{+}(L^{-}(x))=L^{-}(x)$ , and $A^{+}(C(x))=K(x)$ for each $x¥in X$.

Proof. For any invariant subset M of X, $M¥subset A^{+}(M)¥subset A_{w}^{+}(M)$ . Hence,
each statement holds trivially.

Theorem 10. A necessary and sufficient condition for a flow $(X, ¥pi)$ to be

of characteristic 0 is that $A^{+}(C(x))=D(x)$ for each $x¥in X$.

Proof. The necessity of the condition follows from Proposition 9. Conver-
sely, if $ J(x)=¥phi$ for some $x¥in X$, then $D(x)=C(x)=K(x)$ . Let $ J(x)¥neq¥phi$ for some
$x¥in X$. If $y¥in J(x)$ , then $x¥in J(y)¥subset A^{+}(C(y))$ which implies that $J(x)¥subset J(A^{+}(C(y)))$

$¥subset J(C(y))=J(y)$ (the bilateral version of 2. 19, [5] follows easily). Also, $ y¥in$

$J(x)$ implies that $y¥in A^{+}(C(x))$ , and so, $J(y)¥subset J(A^{+}(C(x)))¥subset J(C(x))=J(x)$ .

Thus, $J(x)=J(y)$ for any $y¥in J(x)$ which implies $x¥in J(y)=J(x)$ . Consequently,
$A^{+}(C(x))=J(x)$ whenever $ J(x)¥neq¥phi$ . Next, let $z¥in J(x)$ . Then either
$ L^{+}(z)¥cap C(x)¥neq¥phi$ or $C(z)=C(x)$ . In either case, $K(x)¥subset K(z)$ . On the other
hand, $z¥in J(x)$ implies that $K(z)¥subset K(x)$ , and thus, that $K(x)=K(z)$ for each
$z¥in J(x)$ . Finally, $D(x)=A^{+}(C(x))=J(x)=¥cup¥{K(z):z¥in J(x)¥}=K(x)$ . We
now have $D(x)=K(x)$ for each $x¥in X$.

Corollary 10. 1. A flow $(X, ¥pi)$ is of characteristic 0 if and only if $A^{+}(M)=$

$D(M)$ for each invariant set $M¥subset X$.

Corollary 10. 2. Let $(X, ¥pi)$ be of characteristic 0 (with $X$ regular). Then
a compact (cfosed) invariant set is asymptotically stable if and only if it is
open.

Proof. An open invariant set is obviously asymptotically stable. If $M$ is
a compact (closed) invariant asymptotically stable set, then we can show that
$A^{+}(M)=M$. For let $y¥in A^{+}(M)$ . Then $ L^{+}(y)¥cap M¥neq¥phi$ or $C(y)¥subset M$. If $ z¥in$

$L^{+}(y)¥cap M$, then $y¥in J^{+}(y)¥subset J^{+}(z)¥subset D^{+}(M)=M$ (see 1. 9 and 1. 15 of [5]). In
either case, $y¥in M$, and hence, $A^{+}(M)¥subset M$ or $A^{+}(M)=M$.
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Corollary 10. 3. Let $(X, ¥pi)$ be of characteristic 0 {with $X$ regular). Then
a compact (cfosed) connected invariant set is asymptotically stable if and only

if it is a component of X. Furthermore, if $X$ is connected, there are no com-

pact (cfosed) connected invariant asymptoticaffy stable proper subsets of $X$.
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