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1. Introduction.
‘ Ahmad [1] introduced and classified planar flows of characteristic 0% (07)
in terms of their critical points and he characterized planar flows of characteristic
0% in terms of their critical points. The author [6], [7] characterized planar
flows of characteristics 0%, 07, and O in terms of their critical points. In [2]
Ahmad classified flows of characteristic 0= (0~) on locally compact phase spaces.
The purpose of this paper is to characterize and study the structure of flows of

characteristic 0 on Hausdorff phase spaces.

2. Basic Definitions.

A pair (X, w) consisting of a topological space X and a continuous mapping
7 from the product space XX R into X where R is the usual real space is called
a dynamical sysiém or (continuous) flow whenever the following conditions are
satisfied.

1. 7w(x,0)=x for each x=X.
2. wm(mw(x,t),s)=mn(x,t+s) for each x&X and ¢, s=X.
3. & is continuous on XXR.

We denote n(x,¢) by xt for brevity and call X the phase space. Throughout
this paper, the phase spaces will be Hausdorff spaces. '

We denote the (positive, negative) trajectory through x& X by (C+(x), C~(x))
C(x) and K*(x)=C*(x), K~ (2)=C (%), and K(x)=C(x). The (positive, nega-
tive) limit set is denoted by (L*(x), L (x)) L(x). The (positive, negative)
prolongation and (positive, negative) prolongational limit set are denoted by
(D*(x), D=(x)) D(x) and (J*(x),J (%)) J(x), respectively.

We let 31(x) and JJ(M) denote the neighborhood filters of x= X and Mc X.

A set Mc X is called positively stable if for every U=J](M) there exists a
VeJI(M) such that V=C*(V)CU, A point x in X is positively (weakly)
attracted to MC X if the net (xt) for t>0 is (frequently) ultimately in each
neighborhood of M. If the set A*(M) (Aw(M))={x: x is positively (weakly)
attracted to M} is a neighborhood of M, then M is called a positive (weak)
attractor. We call M positively asymptotically stable when M is both positively
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stable and a positive attractor. The corresponding negative and bilateral versions
of the terms above are defined similarly. For brevity, we shall drop the adjec-
tive “positive” from the four terms defined above.

A flow (X,n) is called (negatively, bilaterally) dispersive if (J~(x)=d¢,
J@)=¢) J*(x)=¢ for each xX. A point x in X is called nonwandering if
reJ(x). A point ¥ in X is said to be (positively, negatively) Lagrange stable
if and only if (K*(x), K~(x)) K(x) is compact. We call a point ¥ in X
(positively, mnegatively) Poisson stable whenever (x€L*(x), x=L (%)) x=
L*(®x)NL~(x). A point x in X is called recurrent if and only if for any VeJi(x)
there is a >0 such that Vny[0,t]#¢ for every y=C(x). A set Mc X is said
to be (positively, negatively) minimal if and only if it is closed and is (positi-
vely, negatively) invariant and contains no nonempty proper subset with these
respective properties. ) '

For the basic properties of dynamical systems used in this paper we refer to

[4] and [5].

3. Flows of Characteristic 0.

A flow (X,7z) is said to be of characteristic 0 (07) if D+*(x)=K*(x)
(D (2)=K~(x)) for each x in X, or equivalently, if Jr(x)=L*(x) (J (x)=
L=(x)) for each z in X. A flow having characteristics 0* and 0~ is called a
flow of characteristic 0. We say (X, 7) has characteristic 0 whenever D(x)=
K(x) for each x in X.

Proposition 1. Let (X, 7n) have characteristic 0. Then (X', ') has charac-
teristic O where X' is an invariant subset of X and n'=rn|X'.

Proof. Let z=X. Then D'(x)=J"(x)UC@x)c(J(@)NnXHUCx)C
(K(@)NnXHUC@)=L"(x)U C(x)=K'(x).

Proposition 2. . The following are equivalent for a flow (X, ).

(a) (X,m) has characteristic 0.

(b) For each z=X, J+(x):J‘(x):{§I§<x>

(c) For each xEX, Jf(x):(]—(x):{égg.

Proof. We first show that (a) implies (b). Let J*(x)#¢ for some x=X.
If yeJ*(x), then xeJ (y)cD(y)=K(y)cJ*(x). Hence, K(x)cJ*(x). Since
JH*(@)cD(@x)=K(x), we have J*(x)=K(x). Furthermore, x=J*(x) implies
xeJ(x), and hence, K(x)cJ () D(x)=K(x). Similary, J (x)#¢ for some
xe X implies J*(x)=J (x)=K(x). Finally, whenever J(2)=¢, J*(x)=J (x)=

Next, we show that (b) implies (¢). If J*(x)=J (x)=¢ for some x=X,
then J*(x)=J(x)=¢p=L(x). If J(x)#¢ and K(x)=C(x) for some x=X, then
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Jr(a@)=J " (@)=C(x). If J(x)#¢ and K(x)+#C(x) for some x& X, then L(x)#
¢. Furthermore, for yeL(x) we have xEJ(y)CD(y):C(g))UK(y)zK(y)C
L(x) since J(y)=K(y). Thus, J*(x)=J (x)=K(x)CL(x), and hence, J*(x)
=J (x)=L(x).

Finally, we show that (a) follows from (c). For any z€X, D(x)=
CHUuJxc CxUL(x)=K(x). Hence, D(x)=K(x).

Proposition 3. Let (X, %) have characteristic 0. If L¥(x)+#¢ (L (x)#¢)
for some x= X, then J*(x)=J (x)=L*(x) (J*(x)=J (x)=L"(x)).

Proof. Let y=L*(x) for some x in X. Then yeJ*(x) and z=J (y)C
D(y)=K(y)c L*(x). Thus, J*(x)CD(x)=K(x)cL*(x), and so, J*(x)=L*(x).
By Proposition 2, J~(x)=L*(x).

Corollary 3.1. Let (X,7) have characteristic 0. If J*(x)#¢ for some
x= X, then

J(x)=J*(x) =J~(x)=D(x)=D*(a) = D~(x) = K(z)
B {K+(x)=K(x)=L+(x) if LH(x)#¢.
AK- (@) =K(@)=L"(x) if L-(2)#g.

Proposition 4. If (X,7) has characteristic 0, then L*(x) is minimal for
each x=X. ‘ '

Proof. L*(x) is trivially minimal whenever it is empty. Let y=L*(x)
for some x=X. Then LT*(x)cJ*(x)cJ*(y)cD(y)=K(y), and hence, K(y)=
L+(x). Thus, L*(x) is minimal (see 4.15 of [4]).

Corollary 4.1. Let (X, 7) be of characteristic 0 and X be locally compact.
If L*(x) (L=(x)) is compact for some x=X, then L*(x) (L~(x)) is positively
and negatively minimal and each point of L*(x) (L=(x)) is recurrent.

Proof. See Theorem 4.8 of [5] and Theorem 4.22 of [4].

Proposition 5.  For a flow (X,m) of characteristic 0 with locally compact
phase space the following are equivalent for x=X.

(a) L*(x) is compact minimal.

(b)) LT+ for each y= L(x).

(c) L*(y)=L*(x) for each y=L*(x).

The negative limit set version also holds.

Proof. The equivalence of the statements follows trivially whenever L*(x)
=¢ for some ¥ X. Let L*(x)+#¢ for some x=X. If L*(x) is compact, then
LY (y)+¢ for each yeL*(x) (see 3.6.1 of [4]). Thus, (a) implies (b). If
(b) holds, then for yeL*(x)cJ*(x) we have x=J (y). By Proposition 3,
x= L*(y), and hence, L*(y)=L*"(x). Finally, if (c) holds, then x= L*(x)=L*(y)
for each y&L*(x). Hence, L*(x)C Aw(x) and L*(x) is compact minimal (see
2.4.2 and 4.6 of [5]).
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Corollary 5.1. If (X,7) is of characteristic 0 with locally compact phase
space and L*(x) is a nonempty compact minimal set for some x=X, then
Lx)=L*(x)=L (x)=K@)=K"(x)=K (x)=J(@)=J"(x)=J(x)=D(x)=
DH(x)=D"(x).

Corollary 5.2. Let (X,7m) be of characteristic 0 with locally compact phase
space and let L*(x) be a nonempty compact minimal set for each x=X. Then
(X, ) is of characteristics 01,07, and 0*.

We give the following notation for convenience. For a flow (X, 7) we let

M= {w: L*(x)#¢ and L~(2)=¢},
M,={x: L*(x)=¢ and L~ (x)+#¢},
M;={x: L(x)=¢ and J*(x)+#¢}, and
M,={x: L*(x)=L (x)=J(x)}.

Theorem 6. Let (X,7n) have characteristic ‘O. " The sets M,, M,, M;, and

M, are pairwise disjoint sets whose union is X. The restriction of the flow to

(i) M{UM,is of characteristics 0 and 0%, and is of characteristics 0~ and
0% if and only if M,=¢,

(ii) MyUM, is of characteristics 0 and 0~, and is of characteristics 0% and
0% if and only if M,=d¢, ’

(iii) M, is of characteristics 0 and 0%, and

(iv) Mj; is only of characteristic 0 provided it is not dispersive.

Proof. That M,, M,, M, and M, are pairwise disjoint sets whose union is
X follows from Proposition 3 and its corollary. According to Proposition 1,
each restriction has characteristic 0.

Let #'=rn|M,JUM,. Then J'*(x)=L""(x) for each x&M,; UM, since J'+(x)
cJr@)NM UMY =L*(x)Nn(M,UM,)=L"*(x). Hence, the restricted flow has
characteristic 0*. Furthermore, for x&M,, J' " (x)=J'"(x)=L’"(x) and for xe=
M, J'~(x)+¢ while L'~ (x)=¢. Consequently, the restricted flow does not have
characteristic 0~ or 0% if and only if M;+¢.

The proof of (ii) follows similarly and (iii) is a result of (i) and (ii).

Finally, if the flow (M;, ') where n/=nrn|M, is not dispersive, then it is not
negatively dispersive. In this case, since L*(x)=L(x)=¢ for each x<M,,
(Ms,m") is.not of characteristics 07,07, and 0%,

Corollary 6.1. Let (X, %) be of characteristic 0. Then (X, %) has charac-
teristic 0F (07) if and only if My=M;=¢ (M;=My=¢). Furthermore, (X, )
has characteristic 0= if and only if X= M,. '

Corollary 6.2. A flow (X,m) of characteristic. 0 with locally compact
phase space is of characteristic 0% if and only if each nonwandering point is
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Lagrange stable.

Proof. Let (X,7) have characterlstlc 0+ and let xeJ*(x) for some xeX
Then L*(x)=J*(x)+#¢. For y=L*(x) we have J*(x)J*(y)=L*(y) so that
L*(y)+¢. By Proposition 5 and Corollary 5.1, K(x) is compact. ’

. Conversely, if J*(x)=¢, then J*(x)=J (x)=L*(x)=L (x). Let J*(x)+*¢.
Then J*(x)=K(x) which is compact. Hence, L*(x)#¢ and L™ (x)+#¢ yielding
X=M,.

Corollary 6.3. Let (X,m) have a compact phase space. Then the charac-
teristic 07,07,0%, and O properties are equivalent. Furthermore, in this case
X=DM, and K(x) is a compact minimal bilaterally stable set for each x=X..

Proof. The equivalence of the characteristic 0%,07, and 0% properties was
shown by Ahmad in [2]. Any flow of characteristic 0% is- of characteristic. 0.
Let (X, %) be of characteristic 0. Then for each ¥ X, L*(x)#¢ and L~ (x)+
¢ since X is compact. Hence, X=M,, and so, (X,7) is of characteristic 0=*.
The remainder of the proof follows from Proposition 5, Corollary 5.1, and
Theorem 4.7 of [2].

Corollary 6.4. Let (X,m) be of characteristic 0 where X is metric and
either locally compact or complete. Then X= M,.

Proof. Let X’ be the closed set {x: J*(x)+#¢} (see 4.2.3-of [4]). Now
L{(x)c X’ for each x= X since y= L(x) implies that x=J(y). Thus, L'(x)=L(x)N
X'=L(x) for each x=X’. Also for any x=X/, J(x)=K(x)=K'(x)=J/(x).
Each point of X’ is nonwandering so that the set M,nX’ of bilaterally Poisson
stable points is dense in X’ (see 4.6 of [4]). Hence, X=M,.

Example. There are flows for which the sets M, M,, M;, and M, are all
nonempty. Let X be the union of the torus Y and the plane R2 Define
7: XX R—X as follows. On R? define 7 by the system of differential equations

7= —r2sin@

0=1,
>0 (see Example 2 of [6]) and on Y define # by the planar system

g=f(x,y)
v=af(,y),

o irrational, where f(x,y)=f(x+1,y+1D)=FCx,y+D=Fx+1,y), flx,y)>0 if
x and ¥ are not both zero (mod 1), and f(0,0)=0 (see p.56 of [4] and p. 33
of [3]). Let p be the critical point on the torus. The flow restricted to the
locally compact phase space X— {p} is of characteristic 0 and the sets M, My, M,
and M, are nonempty. ’ ' '

Theorem 7. Let (X,n) be a flow with locally compact phase space. Then
(X, ) is of characteristic 0 if and only if
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(i) each compact minimal set is bilaterally stable and

(ii) J(@)CK(x) for each x not in a compact minimal set.

Proof. Let (X,7m) be of characteristic 0 and let H be compact minimal.
Then D(H)=U{D@):x=H}=U{K(x): x€H}=H since K(x)=H for each
x=H (see 4.15 of [4]). Hence, H is bilaterally stable by Ura’s Theorem (see
2.1 of [6]). Condition (ii) follows by Proposition 2.

Conversely, if x= H where H is compact minimal, then by Ura’s Theorem
we have D(x)CD(K(x))=K(x) since H=K(x), and hence, D(x)=K(x). On
the other hand, if x is not in a compact minimal set, then D(x)C K(x). In either
case D(x)=K(x). Therefore, (X,7) is of characteristic 0.

Corollary 7.1. Let (X, m) be of characteristic 0 with locally compact phase
space. Each compact minimal set has a neighborhood of Poisson stable points.

Proof. Any compact minimal set H has a compact neighborhood N since
X is locally compact. The bilateral stability of H implies that there is an
invariant neighborhood V of H contained in N. For any point 2 in V, L*(x)+
¢ and L~ (x)+#¢, and hence, each point of V is Poisson stable.

Theorem 8. Let (X, 7) be a flow of characteristic 0 with locally compact
phase space. A closed connected invariant set M with compact boundary is either
a component of X or is not isolated from nonémpiy compact minimal sets.

Proof. Suppose M is a closed connected invariant set which is not a com-
ponent of X. Since the boundary of M is a compact invariant set, L*(x)+#¢
and L*(x)COM for each x®M. Thus, OM is the union of compact minimal
bilaterally stable sets by virtue of Proposition 5 and Theorem 7, and hence, M
is bilaterally stable. Since X is locally clompact and @M is compact, there is a
compact VeJl(0M). Let U=JI(M). The bilateral stability of M implies that
there is an invariant set WeJJ(M) such that C(‘W)C UNn(VUM). For every
xe W—M, L*(x) is nonempty compact minimal. Thus, M is not isolated from
nonempty compact minimal sets.

Proposition 9. Let (X,7) be a flow of characteristic 0. Then for each
re X,

Au(L¥(x))=L*(x), Aw(L~(x))=L"(x), and Au(C(x))=K(x).

Proof. If L*(x)=¢ for some x= X, then the first equality follows trivially.
Let L*(x)#¢ for some x=X. Since we already have L+(x)CA,JI,(L+(xj), let
ye AL(L*(x)). Either the net (yz) is frequently in L*(x) or L*(y)NL*(x)+#
¢. If (yt) is frequently in L*(x), then yeL*(x). If some point z is in

L+(y)nL*(x), then we have yeJ*(2)=L*(z)cL*(x). Thus, Au(L*(x))C
L*(x). We can obtain Aw(L~(x))=L"(x) similarly.
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Finally, if L*(x)#¢ for some x<X, then AT(Cx)) C ABL (%)) =L+(x) =

K(x)c Au(C(x)). Similarly, L-(x)#¢ yields An(C(x))=K(x). Let L(x)=4¢.
Either J*(x)=J (x)=C(x) or J*(x)=J (x)=¢. First, suppose that J*(x)=

J-(x)=C(x). Then for each y=Aw(C(x)) we have J*(y)cC(x) since

J*(Aw(C@) I (Ca))=J*(x)=C(x) (see 2.19 of [5]). If J*(y)#¢, then
yeJ (ycClx). If J*(y)=¢, then L*(y)=¢ and (yz) is frequently in C(x).
Thus, AH(C(x))CC(x), and hence, AL(C(x))=C(x)=K(x). Next, suppose
that J*(x)=J (x)=¢. Then L*(y)=J"(y)=¢ for each y=A,(C(x)) since
JH(Aw(C))) T (Ca))=J+*(x)=¢. Thus (yz) is frequently in C(x) for each
y=An(C(x)) implying that A5 (C(x))=C(x)=K(x).

Corollary 9.1. Let (X,7) be of characteristic0. Then A*(L*(x))=L"(x),
AY(L~(x))=L"(x), and A*(C(x))=K(x) for each z=X.

Proof. For any invariant subset M of X, MCA*(M)CAW(M) Hence,
each statement holds trivially.

Theorem 10. A necessary and sufficient condition for a ﬂow (X, ) to be
of characteristic 0 is that AY(C(x))=D(x) for each x= X.

Proof. The necessity of the condition follows from Proposition 9. Conver-
sely, if J(x) ¢ for some x= X, then D(x)=C(x)=K(x). LetJ(x)+#¢ for some
rxeX. If yeJ(x) then x=J (y) c A*(C(y)) which implies that J (x) cJ (A*(C(y)))
cJ(Cly))=J (y) (the bilateral version of 2.19, [5] follows easily). Also, y&
J(x) implies that y= A*(C(x)), and so, J(y)TJ(AT(C(x)))J(C(x))=J(x).
Thus, J(x)=J(y) for any y=J (x) which implies x=J (y)=J(x). Consequently,
AY(C(x))=J(x) whenever J(x)+*¢. Next, let z=J(x). Then either
Lt*(2)NC(x)+¢ or CCz)zC(x). In either case, K(x)cK(z). On the other
hand, z&J(x) implies that K(z2)C K(x), and thus, that K(x)=K(z) for each
zeJ(x). Finally, Dx)=A*'(C(x))=J(x)=U{K(2): z&J(x)} =K(x). We
now have D(x)=K(x) for each x= X.

Corollary 10.1. A flow (X, ) is of characteristic 0 if and only if A*(M)=
D(M) for each invariant set Mc X.

Corollary 10.2. Let (X,7) be of characteristic 0 (with X regular). Then
a compact (closed) invariant set is asymptotically stable if and only if it is
open.

Proof. An open invariant set is obviously asymptotically stable. If M is
a compact (closed) invariant asymptotically stable set, then we can show that
A*(M)=M. For let yeA*(M). Then L¥*(y)nM=+=¢ or C(y)cM. If ze
L*(y) "M, then yeJ @y cJ*(z)cD*(M)=M (see 1.9 and 1.15 of [5]). In
either case, y= M, and hence, AT(M)c M or A*(M)=M,
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Corollary 10.3. Let (X,7) be of characteristic 0 (with X regular). Then

a compact (closed) connected invariant set is asymptotically stable if and only

if it is a component of X. Furthermore, if X is connected, there are no com-
pact (closed) connected invariant asymptotically stable proper subsets of X.
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