## Solutions Sets of Non-linear Integral Equations

By Stanis Yaw Szufla

(A. Mickiewicz University)

N. Kikuchi and S. Nakagiri [2] proved an existence theorem of solutions of a non-linear integral equation of Volterra-type

(1) 
$$x(t) = f(t) + \int_0^t a(t, s)g(s, x(s))ds.$$

Under the same assumptions as in [2], in this note we investigate some topological properties of the set of solutions of the equation (1).

1. Assume that  $N = \{1, 2, \dots\}$ , R is the set of real numbers, J is a compact interval in R,  $|\cdot|$  is the Euclidean norm in  $R^d$ , and  $\varphi$  is a convex N-function which satisfies the condition  $\Delta_2$  (cf. [3]). Let  $L_{\varphi}(J) = L_{\varphi}(J, R^d)$  be the Orlicz space of all L-measurable functions  $u: J \longrightarrow R^d$  for which the number

$$||u||_{\varphi} = \inf \left\{ r > 0 : \int_{J} \varphi \left( \left| \frac{u(s)}{r} \right| \right) ds \le 1 \right\} < \infty.$$

The adjoint space of  $L_{\varphi}(J)$  we denote by  $L_{\varphi}^{*}(J)$ . Obviously  $L_{\varphi}^{*}(J) = L_{\psi}(J)$ , where  $\psi$  is the N-function defined by the formula  $\psi(v) = \sup\{uv - \varphi(u) : u \ge 0\}$  (cf. [3]). We shall introduce the product space

$$L_{\varphi}^*(J)^d = L_{\varphi}^*(J) \oplus \cdots \oplus L_{\varphi}^*(J).$$

Furthermore, let W be an open convex set in  $\mathbb{R}^d$  and let I be an open interval in R containing 0. Analogously as in [2], we introduce the following assumptions:

- (i)  $f: I \longrightarrow W$  is a continuous function.
- (ii)  $g: I \times W \longrightarrow R^d$  is a function such that
- 1° for each fixed  $x \in W$ , the function  $t \longrightarrow g(t, x)$  is L-measurable on I;
- 2° for each fixed  $t \in I$ , the function  $x \longrightarrow g(t, x)$  is continuous on W;
- 3° for each compact set  $K \subset W$  and each compact interval  $J \subset I$  there exists a measurable real-valued function  $m \in L_{\varphi}(J,R)$  such that  $|g(t,x)| \leq m(t)$  for  $(t,x) \in J \times K$ .
- (iii)  $(t,s) \longrightarrow a(t,s)$  is a mapping of  $I \times I$  into the space  $M^d$  of linear operators on  $R^d$  such that
- 1° for each compact interval  $J \subset I$  and each t in I the mapping  $A: L_{\varphi}(J)$   $\longrightarrow R^d$  defined by  $A: x(\cdot) \longrightarrow \int_I a(t,s)x(s)ds$  is a bounded linear mapping;

2° the mapping  $I \longrightarrow L_{\varphi}^*(J)^d$  defined by  $t \longrightarrow a(t, \cdot)$  is continuous in the weak\*-topology on  $L_{\varphi}^*(J)^d$ .

Let  $J \subset I$  be a compact interval, and let  $L_1(J)$  be the space of all L-integrable functions  $u: J \longrightarrow \mathbb{R}^d$  with the norm

$$||u||_1 = \int_J |u(s)| ds.$$

Put

$$B_{\varphi}^{m}(J) = \{x \in L_{\varphi}(J) : |x(t)| \le m(t) \text{ for almost every } t \in J\}$$

and

$$H(x)(t)=f(t)+\int_0^t a(t,s)x(s)ds$$
 for each  $x\in B^m_{\varphi}(J)$  and  $t\in J$ .

In the same way as in [2], we prove that

- (iv) for each fixed  $x \in B_{\varphi}^{m}(J)$  the function  $t \longrightarrow H(x)(t)$  is continuous on J.
- (v) H is a mapping of  $B_{\varphi}^{m}(J)$  into  $L_{1}(J)$ , and the set  $H(B_{\varphi}^{m}(J))$  is compact in the strong topology on  $L_{1}(J)$ .
  - (vi) for any  $t \in J$  the mapping  $a(t, \cdot) \in L_{\varphi}^*(J)^d$ ,  $\sup\{||a(t, \cdot)||_{\psi} : t \in J\} < \infty$ . Moreover, we introduce the following definition (cf. [1)):

A subset Q of a metric space X is called a compact  $R_{\delta}$  iff Q is homeomorphic to the intersection of a decreasing sequence of compact absolute retracts.

2. Choose a positive number c such that  $[0,c]\subset I$ . We can find a positive number h and some convex compact subset K of W such that every x(t),  $|x(t)-f(t)|\leq h$  for  $0\leq t\leq c$ , satisfies  $x(t)\in K$  for  $0\leq t\leq c$ . Moreover, choose a number  $p,0< p\leq c$ , such that  $2\sup\{||a(t,\cdot)||_{\phi}: t\in [0,c]\}\cdot ||m\chi_{[0,p]}||\leq h$ , where m is a measurable function defined in (ii) corresponding to the pair K, [0,c].

**Theorem.** Let f, g and a satisfy, respectively, assumptions (i), (ii) and (iii), and let J = [0, p]. Then the set V of all solutions of the equation (1) defined on J is a compact  $R_{\delta}$  in  $L_1(J)$ .

**Proof.** By the Dugundji extension theorem there is a continuous function  $r: \mathbb{R}^d \longrightarrow K$  such that r(x) = x for every  $x \in K$ . Put

$$G(x)(t)=f(t)+\int_0^t a(t,s)g(s,r(x(s)))ds$$
 for  $t\in J$  and  $x\in L_1(J)$ .

From the assumptions (i)-(iii) it follows that for any fixed  $x \in L_1(J)$  the function  $t \longrightarrow G(x)(t)$  is continuous on J, and therefore  $G(x) \in L_1(J)$ . Moreover,

$$|G(x)(t)-f(t)| = \left| \int_0^t a(t,s)g(s,r(x(s)))ds \right| \le 2||a(t,\cdot)||_{\phi}||m\chi_J||_{\varphi} \le h,$$

i.e.  $G(x)(t) \in K$  for each  $t \in J$ ,  $x \in L_1(J)$ .

Assume now that a sequence  $(x_n)$ ,  $x_n \in L_1(J)$ , converges in  $L_1(J)$  to  $x_0 \in L_1(J)$ . Suppose that  $||G(x_n) - G(x_0)||_1$  is not convergent to 0 as  $n \to \infty$ . Then there are  $\varepsilon > 0$  and a subsequence  $(x_{n_k})$  such that

(2) 
$$||G(x_{n_k}) - G(x_0)||_1 > \varepsilon for k \in \mathbb{N}.$$

Since  $\lim_{k\to\infty} ||x_{n_k}-x_0||_1=0$ , we can find a subsequence  $(x_{n_{k_j}})$  such that  $\lim_{j\to\infty} x_{n_{k_j}}(s)=x_0(s)$  for almost every t in J. Let  $y_j=x_{n_{k_j}}$ . By (ii), for any  $t\in J$  we have

$$\lim_{i\to\infty} a(t,s)g(s,r(y_j(s))) = a(t,s)g(s,r(x_0(s)))$$

for almost every s in J. Furthermore,  $|a(t,s)g(s,r(y_j(s)))| \le |a(t,s)|m(s)$ , where  $|a(t,\cdot)|m(\cdot) \in L_1(J,R)$ , and hence by the Lebesgue theorem we obtain

$$\lim_{j \to \infty} \int_0^t a(t, s) g(s, r(y_j(s))) ds = \int_0^t a(t, s) g(s, r(x_0(s))) ds,$$

i.e.  $\lim_{\substack{j\to\infty\\j\to\infty}}G(y_j)(t)=G(x_0)(t)$  for  $t\in J$ . Since  $|G(y_j)(t)|\leq |f(t)|+h$  for  $j\in N$  and  $t\in J$ , the Lebesgue theorem proves that  $\lim_{\substack{j\to\infty\\j\to\infty}}||G(y_j)-G(x_0)||_1=0$ , in contradiction with (2). Consequently, the mapping  $G\colon L_1(J)\longrightarrow L_1(J)$  is continuous.

For any  $n \in N$  and  $x \in L_1(J)$  let us put  $p_n = p/n$  and

$$G_n(x)(t) = \begin{cases} f(0) & \text{for } 0 \le t \le p_n \\ G(x)(t-p_n) & \text{for } p_n \le t \le p. \end{cases}$$

Obviously,  $G_n$  is a continuous mapping of  $L_1(J)$  into  $L_1(J)$ . We shall show that

(3) 
$$\lim_{n\to\infty} ||G_n(x)-G(x)||_1=0 \text{ uniformly for } x\in L_1(J).$$

Suppose that (3) does not hold. Then there exist  $\varepsilon > 0$  and sequences  $(n_k)$ ,  $(x_k), x_k \in L_1(J)$ , such that

$$(4) ||G_{n_k}(x_k) - G(x_k)||_1 > \varepsilon \text{for } k \in \mathbb{N}.$$

Since  $G(L_1(J)) \subset H(B_{\varphi}^m(J))$  and  $H(B_{\varphi}^m(J))$  is compact in  $L_1(J)$ , we can find a subsequence  $(G(x_{k_j}))$  which converges in  $L_1(J)$  to a continuous function  $u \in H(B_{\varphi}^m(J))$ . Put  $\widetilde{G}_j = G_{n_k}$ ,  $q_j = p_{n_{k_j}}$  and  $y_j = x_{k_j}$ . Then

$$\begin{split} & \|\widetilde{G}_{j}(y_{j}) - G(y_{j})\|_{1} \leq \|(\overline{G}_{j}(y_{j}) - G(y_{j}))\chi_{[0,q_{j}]}\|_{1} + \|(\widetilde{G}_{j}(y_{j}) - G(y_{j}))\chi_{[q_{j},p]}\|_{1} \\ & = \|(f(0) - G(y_{j}))\chi_{[0,q_{j}]}\|_{1} + \|(\widetilde{G}_{j}(y_{j}) - G(y_{j}))\chi_{[q_{j},p]}\|_{1} \leq \|(f(0) - u)\chi_{[0,q_{j}]}\|_{1} \\ & + \|(G(y_{j}) - u)\chi_{[0,q_{j}]}\|_{1} + \|(G(y_{j})(\cdot - q_{j}) - u(\cdot - q_{j}))\chi_{[q_{j},p]}\|_{1} \\ & + \|(u(\cdot - q_{j}) - u)\chi_{[q_{j},p]}\|_{1} + \|(u - G(y_{j}))\chi_{[q_{j},p]}\|_{1} \leq \|(f(0) - u)\chi_{[0,q_{j}]}\|_{1} \\ & + \|(u(\cdot - q_{j}) - u)\chi_{[q_{j},p]}\|_{1} + 3\|G(y_{j}) - u\|_{1}, \end{split}$$

which implies

$$\lim_{i\to\infty} ||G_{n_{k_j}}(x_{n_{k_j}}) - G(x_{n_{k_j}})||_1 = 0,$$

in contradiction with (4). This proves (3).

Put  $T_n=I-G_n$  for  $n\in\mathbb{N}$ , where I denotes the identity mapping of  $L_1(J)$  into  $L_1(J)$ . Obviously,  $T_n$  is a continuous mapping of  $L_1(J)$  into  $L_1(J)$ .

Assume that  $y \in L_1(J)$ . We define a finite sequence  $(x_k)$ ,  $k=1,\dots,n$ , of continuous functions by the formulas

$$x_{1}(t) = y(t) + f(0) \quad \text{for } 0 \le t \le p_{n}$$

$$x_{k+1}(t) = \begin{cases} x_{k}(t) & \text{for } 0 \le t \le k p_{n} \\ y(t) + f(t - p_{n}) + \int_{0}^{t - p_{n}} a(t - p_{n}, s) g(s, r(x_{k}(s))) ds \\ & \text{for } k p_{n} \le t \le (k+1) p_{n}, \quad k = 1, \dots, n-1. \end{cases}$$

We see that

$$x_k(t) = y(t) + f(0)$$
 for  $0 \le t \le p_n$   
 $x_k(t) = y(t) + f(t - p_n) + \int_0^{t - p_n} a(t - p_n, s)g(s, r(x_k(s)))ds$   
for  $p_n \le t \le k p_n$   
 $x_{k+1}|_{[0, kp_n]} = x_k$  and  $x_k \in L_1([0, kp_n]).$ 

Consequently,  $x_n \in L_1(J)$  and  $T_n(x_n) = y$ . Conversely, if  $T_n(x) = y$  and  $x \in L_1(J)$ , then  $x|_{[0,kp_n]} = x_k$  for  $k=1,\dots,n$ , and therefore  $x=x_n$ . This proves that  $T_n: L_1(J) \longrightarrow L_1(J)$  is a bijection.

Now we assume that  $\lim_{j\to\infty} ||T_n(x_j)-T_n(x_0)||_1=0$ , where  $x_j,x_0\in L_1(J)$ . Since  $x_j(t)=T_n(x_j)(t)+f(0)$  for  $0\le t\le p_n,\ x_j\chi_{[0,p_n]}\longrightarrow x_0\chi_{[0,p_n]}$  in  $L_1(J)$  when  $j\to\infty$ . Further,

$$x_j(t) = T_n(x_j)(t) + G(x_j)(t - p_n) = T_n(x_j)(t) + G(x_j \chi_{[0, p_n]})(t - p_n)$$

for  $p_n \le t \le 2p_n$ , and  $G(x_j \chi_{[0,p_n]}) \longrightarrow G(x_0 \chi_{[0,p_r]})$  in  $L_1(J)$ , and hence  $x_j \chi_{[p_n,2p_n]} \longrightarrow x_0 \chi_{[p_n,2p_n]}$  in  $L_1(J)$ , from which it follows that  $x_j \chi_{[0,2p_n]} \longrightarrow x_0 \chi_{[0,2p_n]}$  in  $L_1(J)$  when  $j \to \infty$ . By repeating this argument we find  $\lim_{j \to \infty} x_j \chi_{[0,kp_n]} = x_0 \chi_{[0,kp_n]}$  in  $L_1(J)$  for  $k=1,\dots,n-1$ , i.e.  $\lim_{j \to \infty} x_j = x_0$  in  $L_1(J)$ . This proves the continuity of  $T_n^{-1}$ . Consequently,  $T_n$  is a homemorphism  $L_1(J) \longrightarrow L_1(J)$ .

Since  $G(L_1(J)) \subset H(B_{\varphi}^m(J))$  and  $H(B_{\varphi}^m(J))$  is compact in  $L_1(J)$ , G is a compact mapping, and therefore T = I - G is a proper mapping. Thus we can apply Browder's theorem [1; Th. 7], which proves that  $T^{-1}(0)$  is a compact  $R_{\delta}$  in  $L_1(J)$ . Since  $x(t) = G(x)(t) \in K$  for  $t \in J$  and  $x \in T^{-1}(0)$ , r(x(t)) = x(t), and finally  $T^{-1}(0) = V$ .

**Remark 1.** Let S(J) be the space of all L-measurable functions  $u: J \longrightarrow$ 

 $R^d$ . Assume that F(J) is a Frechet function space with paranorm  $|\cdot|_F$  such that

- 1°  $L^{\infty}(J) \subset F(J) \subset S(J)$ .
- 2° If  $u_n, u \in F(J)$  and  $\lim_{n \to \infty} |u_n u|_F = 0$ , then  $u_n \to u$  in S(J).
- 3° If  $u_n, u \in S(J)$ ,  $k \in \mathbb{R}^+$ ,  $\lim_{n \to \infty} u_n(s) = u(s)$  and  $|u_n(s)| \le k$ ,

 $|u(s)| \le k$  for almost every  $s \in J$ , then  $\lim_{n \to \infty} |u_n - u|_F = 0$ .

For each  $x, y \in V$  put  $d_1(x, y) = ||x - y||_1$  and  $d_F(x, y) = |x - y|_F$ . Since V is a set of continuous functions  $x: J \longrightarrow \mathbb{R}^d$  such that  $|x(s)| \leq |f(s)| + h$  for  $s \in J$ , the metric spaces  $\langle V, d_1 \rangle, \langle V, d_F \rangle$  are homeomorphic. This proves that the set V of all solutions of (1) defined on J is a continuum in F(J).

**Remark 2.** Let C(J) be the space of all continuous functions  $u: J \longrightarrow \mathbb{R}^d$  with the norm  $||u||_C = \sup\{|u(t)|: t \in J\}$ . Replacing the condition (iii, 2°) by a stronger condition:

"the mapping  $I \longrightarrow L_{\varphi}^*(J)^d$  defined by  $t \longrightarrow a(t, \cdot)$  is continuous in the strong topology on  $L_{\varphi}^*(J)^d$ ",

we see that V is an equicontinuous bounded subset of C(J), since

$$|x(t)-x(\tau)| = \left| \int_{0}^{t} a(t,s)g(s,x(s))ds - \int_{0}^{\tau} a(\tau,s)g(s,x(s))ds \right|$$

$$\leq \left| \int_{\tau}^{t} a(t,s)g(s,x(s))ds \right| + \left| \int_{0}^{\tau} (a(t,s)-a(\tau,s))g(s,x(s))ds \right|$$

$$\leq \sup \{ ||a(t,\cdot)||_{\phi} \colon t \in J \} ||m\chi_{[\tau,t]}||_{\phi} + ||m||_{\phi} ||a(t,\cdot)-a(\tau,\cdot)||_{\phi}$$

for each  $x \in V$ ,  $t, \tau \in J$ , and  $||m\chi_{[\tau,t]}||_{\varphi} \to 0$ ,  $||a(t,\cdot)-a(\tau,\cdot)||_{\varphi} \to 0$  when  $|t-\tau| \to 0$ . Consequently, the metric spaces  $\langle V, d_1 \rangle, \langle V, d_C \rangle$  are homeomorphic, and therefore V is a continuum in C(J).

## References

- [1] F. E. Browder, C. P. Gupta, Topological degree and nonlinear mappings of analytic type in Banach space, J. Math. Anal. Appl., 26 (1969), 390-402.
- [2] N. Kikuchi, S. Nakagiri, An existence theorem of solutions of nonlinear integral equations, Funkcial. Ekvac., 15 (1972), no. 2, 131-138.
- [3] M. A. Krasnoselskii, Ja. B. Rutickii, Vypuklye funktcii i prostranstva Orlicza, Moskva, 1958.

nuna adreso: ul. D**ą**browskiego 14 m. 22 60838 Poznań Poland

(Ricevita la 25-an de decembro, 1973)