On Start Sets and Negative Prolongational Limit Sets in Semidynamical Systems

By K. M. DAs and S. S. Lakshmi*

(Indian Institute of Technology)

Abstract. Negative prolongational limit sets are introduced. It is shown that if X is Hausdorff rim-compact, then $J^{-}(x)$ compact and non-empty implies $\lambda^{-}(x) \neq \phi$. Also if S is closed, then $J^{-}(x)$ is weakly negatively invariant. An example is given to show that the above conclusion need not follow if S is not closed. An apparently new necessary and sufficient condition for a point x to be a start point is included (proposition 2.1). In addition, some of its consequences are given as corollaries.

1. Introduction.

Let X be a Hausdorff space and R^+ the set of non-negative real numbers. A *semidynamical system* on X is the triple (X, π, R^+) where π is a mapping from $X \times R^+$ to X satisfying the following conditions:

1. $x \pi 0 = x$ for all $x \in X$.

- 2. $(x\pi t)\pi s = x\pi(t+s)$ for all $x \in X$ and $t, s \in R^+$.
- 3. π is continuous.

(III)

A point $x \in X$ is called a *start point* if $x \neq y \pi t$ for all $y \in X$ and t > 0. The set S of start points is called the *start set*. For $x \in X - S(\equiv C(S))$, let θ_x be a negative semitrajectory (see [2]). Then θ_x is one of following types:

(I) there is a $y \in S$ and t > 0 such that $\theta_x = y \pi[0, t]$;

- (II) whatever t>0 there is a $y \in \theta_x$ such that $x=y\pi t$ (principal);
 - $\theta_x \cap S = \phi$ and $\sup\{t > 0 \mid \text{ for some } y \in \theta_x, y \pi t = x\} < +\infty$.

(non-principal, non-compact).

Remark. We note that if θ_x is of type III, it cannot be contained in K_r , a compact subset of X.

For $x \in X$, F(x) the negative funnel through x, is defined as follows:

 $F(x) = \{y \mid y \pi t = x \text{ for some } y \in X \text{ and } t \in \mathbb{R}^+\}.$

For $U \subset X$, let F(U) denote the set $\bigcup_{x \in U} F(x)$,

^{*} Research supported by financial assistance from the Council of Scientific and Industrial Research, Government of India.

K. M. DAS and S. S. LAKSHMI

In addition, we shall use the following notation:

$$T(\theta_x) = \sup \{t \ge 0 \mid \text{ for some } y \in \theta_x, y \neq t = x\}.$$

 $T_x = \inf \{T(\theta_x) \mid \theta_x \text{ is a negative semitrajectory through } x\}$ and $T(U) = \sup \{T(\theta_x) \mid \theta_x \subset F(x) \text{ for some } x \in U\}.$

We recall that X is called *rim-compact* if for each $x \in X$ there is a neighbourhood U of x such that ∂U is compact. It is easy to show that if X is Hausdorff and rim-compact then X is regular (see [3] p. 42). Throughout the paper X stands for a rim-compact, Hausdorff space. Also we recall the following:

 $\lambda^+(x) = \{y \mid \text{there is a net } \{t_i\} \text{ (in } R^+) \text{ diverging to } +\infty \text{ such that the net } \{x\pi t_i\} \text{ converges to } y\},$

 $J^+(x) = \{y \mid \text{there are nets } \{x_i\} \text{ converging to } x, \{t_i\} \text{ (in } R^+) \text{ diverging to } +\infty \text{ such that } \{x_i \pi t_i\} \text{ converges to } y\}.$

2. Start Sets.

We thank the referee for suggesting the following proposition as the basic result leading to our earlier propositions (corollaries 2.1 and 2.2).

Proposition 2.1. Given an lsd-system on a rim-compact space X, a point $x \in X$ is a start point if and only if $\alpha_y \rightarrow 0$ as $y \rightarrow x$ where for any $y \in X$, $\alpha_y = -\sup\{t \ge 0 \mid y \in X \pi t\}$.

Proof. Let x be a start point. Let $\{y_i\}$ be a net converging to x such that the net $\{\alpha_{y_i}\}$ does not converge to 0, that is, there exists an $\varepsilon > 0$. such that $-\alpha_{x_i} > \varepsilon$ for all i. Let $z_i \in X$ be such that $z_i \pi \varepsilon = t_i$. Note that the net $\{z_i\}$ cannot have a subnet converging to x. Therefore there is a neighbourhood U of $x - \partial U$ may be assumed to be compact-such that the net $\{z_i\} \subset C(U)$ ultimately. Thus there exists $t_i \in [0, \varepsilon]$ with $z_i \pi t_i (=z'_i) \in \partial U$. Let $\{z'_j\}$ and $\{t_j\}$ be subnets of $\{z'_i\}$ and $\{t_i\}$ converging to some $z' \in \partial U$ and $\overline{t} \in [0, \varepsilon]$ respectively. Then necessarily $\overline{t} < \varepsilon$ and $z'\pi(\varepsilon - \overline{t}) = x$, a contradiction. The other half is obvious.

The following corollaries are immediate:

Corollary 2.1. Let $x \in S$ and let U be a neighbourhood of x. Then there exists a neihbourhood V (of x) such that $F(V) \subset U$

Corollary 2.2. Let $x \in S$. Then there exists a neighbourhood V of x such that $T(V) < +\infty$.

3. Negative Prolongational Limit Sets.

The importance of the notion of positive prolongation, $D^+(x)$, in the study of stability was recognized by Ura [4]. The positive prolongational limit set, $J^+(x)$, introduced essentially by Auslander, Bhatia and Seibert [1], together with the positive trajectory $\nu^+(x)$ make up $D^+(x)$. The corresponding sets $D^-(x)$, $J^-(x)$ have also been studied in relation to dynamical systems. Let (X, π, R^+) be a semidynamical system.

Definition. $J^{-}(x) = \{y \mid x \in J^{+}(y)\}.$

 $\lambda^{-}(x) = \bigcup \{\lambda^{-}(\theta_x) \mid \theta_x \text{ is a principal negative semitrajectory through } x\},$ where $\lambda^{-}(\theta_x)$ is as in [2], DEF.11.

Remark. $y \in J^{-}(x)$ if and only if there exist nets $\{y_i\}$ converging to y in X, $\{t_i\}$ (in R^+) diverging to $+\infty$ such that $\{y_i \pi t_i\}$ converges to x in X.

Proposition 3.1. Foy any $x \in X$, $J^{-}(x)$ is a closed positively invariant set.

Proof. Let $\{y_i\}$ be a net in $J^-(x)$ converging to y. Then $x \in J^+(y_i)$ and thus $x \in J^+(y)$. Hence $J^-(x)$ is closed. Moreover, $x \in J^+(y) \subset J^+(y\pi t)$ for t > 0 implies $y\pi t \in J^-(x)$. Hence $J^-(x)$ is positively invariant.

The next proposition is an improved version of a result in an earlier draft. **Proposition 3.2.** Let $x \in X$ be such that $J^{-}(x)$ is compact and nonempty. Then $\lambda^{-}(x)$ is non-empty.

Proof. Suppose $\lambda^-(x)$ is empty. If $y(\in X)$ is such that $x \in J^+(y)$, then there exists a negative semitrajectory θ_x (through x) of type III or of principal type such that $\theta_x \subset J^+(y)$. Since $\lambda^-(\theta_x)$ is empty, θ_x is a closed set.

Let $T \ge 0$ be such that for any $t \ge T, z \in \theta_x$ with $z \pi t = x$ implies $z \in J^-(x)$. Let $N = \{z \in \theta_x \mid z \pi t = x \text{ and } t \ge T\}$. Then N is a closed. There exists a closed neighbourhood V of N and an open neighbourhood U of $J^{-}(x)$ such that ∂U is compact and $U \cap V$ is empty. Let $z \in \theta_x$ be arbitrary with $z \pi t_z = x$, where $t_z \ge T$. Then $y \in J^-(z)$ implies that there exist nets $\{y_i\} (\subset U)$ converging to y and $\{t_i\}$ in R^+ diverging to $+\infty$ such that $y_i \pi t_i = z_i$ and the net $\{z_i\}$ converging to z. Let $T_i \in [0, t_i]$ be such that $y_i \pi T_i \in \partial U$ and also $y_i \pi [0, T_i] \subset U$. Without loss of generality we can assume that the net $\{y_i \pi t_i\}$ converges to a point $\bar{y} \in \partial U$. If $\{T_i\}$ has a subnet conveging to say $t^* \in R^+$, then $\bar{y} = y \pi t^*$, whence $\bar{y} \in J^{-}(x)$, a contradiction. Hence the net $\{T_i\}$ diverges to $+\infty$. A similar contradiction is arrived at if the net $\{(t_i - T_i)\}$ is divergent. Thus we may suppose that $\{(t_i - T_i)\}$ has a subnet converging to \bar{t} and $\bar{y}\pi\bar{t}=z$. Let $\{z_i\}$ be a net in θ_x with $z_i \pi t_{z_i} = x$, and let the net $\{t_{z_i}\}$ converge to $T(\theta_x)$. Let the corresponding net $\{\bar{y}_i\}$ ($\subset \partial U$) have a subnet $\{\bar{y}_j\}$ converging to some $y^* \in \partial U$. The net $\{z_j\}$ cannot have a convergent subnet for then in case $T(\theta_x) < +\infty$, $z \in \theta_x$ and $z \pi T(\theta_x) = x$; otherwise $\lambda^-(\theta_x) \neq \phi$. Thus the net $\{t_i\}$ and therefore the net $\{t_j + t_{z_j}\}$ is unbounded. Hence $\bar{z} \in J^-(x)$, a contradiction. This completes the proof.

Proposition 3.3. Let $S(\subset X)$ be closed. Then for any $x \in X$, $J^{-}(x)$ is weakly negatively invariant.

Proof. Let $y \in \partial(J^{-}(x)) - S$. For weak negative invariance it is sufficient

to prove that there exist a t>0 and $z\in J^{-}(x)$ such that $z\pi[0,t]\subset J^{-}(x)$ and $z\pi t=x$. Since S is closed, there is a neighbourhood U of y with ∂U compact and $U\cap S=\phi$. Moreover $y\in J^{-}(x)$ imples that there exist nets $\{y_i\}$ $(\subset U)$ converging to y, $\{t_i\}$ in R^+ diverging to $+\infty$ such that $\{y_i\pi t_i\}$ converges to x. For each i, there is z_i such that either we have $z_i\pi 1=y_i$ or $z_i\pi T_i=y_i$, $T_i\in[0,1)$ and $z\in S$. If for every neigbourhood V of y the net $\{z_i\}$ has a subnet in V, then we can find nets $\{z_{i(V)}\}$ and $\{y_{i(V)}\}$ such that $z_{i(V)}$ as well as $y_{i(V)}\in V$. Thus from $\{t_{i(V)}-1\}$ diverging to $+\infty$ and both the above nets obviously converging to y, we get $y\pi[0,1]\subset J^-(x)$ and $y\pi 1=y$. Otherwise, there is a neighbourhood $V(\subset U)$ of y with $z_i \in V$. Let $t_i (\in [0,1])$ be such that $z_i\pi t_i \in$ ∂V . The net $\{\tau_i\}$, where

$$\tau_i = \begin{cases} T_i - t_i & \text{if } z_i \in S, \\ 1 - t_i & \text{otherwise,} \end{cases}$$

is bounded. Let $\{z_j \pi t_j\}$ and $\{\tau_j\}$ be subnets of the above nets converging to $z \in \partial V$ and $t \in (0, 1]$ respectively. Then $z \pi [0, t] \subset J^-(x)$ and $z \pi t = y$. This completes the proof.

The following example shows that if S is not colosed, then $J^{-}(x)$ need not be weakly negatively invariant.

Example.

Let
$$(R^2 \supset)X = \{(x, y) \mid x=0 \text{ or } y=0\} \cup \{(x, y) \mid x \in [-1, 0] y \in (0, \infty) \text{ and} -1 \le xy < 0\}.$$

Let the dynamical system on R^2 determined by the system

$$\frac{dx}{dt} = -x, \quad \frac{dy}{dt} = y,$$

be restricted to X. Then, the start point set S is $\{(x, y) \mid x = -1 \text{ and } y \in (0, 1]\}$. Obviously, S is not closed. Moreover, for any point $(0, y) \in X$, $(-1, 0) \in J^{-}(0, y)$; whereas any point (x, 0), x < -1, belongs to F((-1, 0)) but does not belong to ((0, y)). Hence, $J^{-}((0, y))$ is *not* weakly negatively invariant.

References

- [1] J. Auslander, N. P. Bhatia and P. Seibert, Attractors in dynamical systems, Bol. Soc. Mat. Mexicana, 9 (1964), 55-66.
- [2] N.P.Bhatia, Semidynamical flow near a compact invariant set, Topological Dynamics-Benjamin, Inc., New York, 81-95 (1968).
- [3] N.P. Bhatia and O. Hajek, Local Semidynamical systems, Lecture Notes in Mathematics (90), Springer-Verlag, Berlin, (1968).
- [4] T.Ura, Sur le courant exterieur a une region invariante, Funkcial, Ekvac., 2 (1959), 143-200.

nuna adreso: Department of Mathematics Indian Institute of Technology Madras-600036 India

(Ricevita la 6-an de augusto 1973) (Reviziita la 17-an de novembro, 1973)