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On Start Sets and Negative Prolongational Limit
Sets in Semidynamical Systems

By K. M. DAS and S. S. Lakshmi*

(Indian Institute of Technology)

Abstract. Negative prolongational limit sets are introduced. It is shown
that if $X$ is Hausdorff rim-compact, then $J^{-}(x)$ compact and non-empty implies
$¥lambda^{-}(x)¥neq¥phi$ . Also if $S$ is closed, then $J^{-}(x)$ is weakly negatively invariant. An
example is given to show that the above conclusion need not follow if $S$ is not
closed. An apparently new necessary and sufficient condition for a point $x$ to
be a start point is included (proposition 2. 1). In addition, some of its conse-
quences are given as corollaries.

1. Introduction.
Let $X$ be a Hausdorff space and $R^{+}$ the set of non-negative real numbers. A

semidynamical system on $X$ is the triple $(X, ¥pi, R^{+})$ where $¥pi$ is a mapping from
$X¥times R^{+}$ to $X$ satisfying the following conditions:

1, $x¥pi 0=x$ for all $x¥in X$.
2. $(x¥pi t)¥pi s=x¥pi(t+s)$ for all $x¥in X$ and $t$ , $s¥in R^{+}$ .
3. $¥pi$ is continuous.

A point $x¥in X$ is called a start point if $x¥neq y¥pi t$ for all $y¥in X$ and $t>0$ . The set
$S$ of start points is called the start set. For $x¥in X-S(¥equiv C(S))$ , let $¥theta_{x}$ be a
negative semitrajectory (see [2]). Then $¥theta_{x}$ is one of following types:

(I) there is a $y¥in S$ and $t>0$ such that $¥theta_{x}=y¥pi[0, t]$ ;

(II) whatever $t>0$ there is a $y¥in¥theta_{x}$ such that $x=y¥pi t$ (principal);

(III) $¥theta_{x}¥cap S=¥phi$ and $¥sup$ {$t>0|$ for some $y¥in¥theta_{x}$ , $y¥pi t=x$} $<+¥infty$ .
(non-principa$f$ , non-compact).

Remark. We note that if $¥theta_{x}$ is of type $¥mathrm{I}¥mathrm{I}¥mathrm{I}$ , it cannot be contained in $K_{p}$

a compact subset of $X$.
For $x¥in X$, $F(x)$ the negative funnel through $x$ , is defined as follows:

$F(x)=$ {$y|y¥pi t=x$ for some $y¥in X$ and $t¥in R^{+}$ }.

For $U¥subset X$, let $F(U)$ denote the set $¥bigcup_{x¥in U}F(x)$ ,
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In addition, we shall use the following notation:

$ T(¥theta_{x})=¥sup$ {$b¥geq 0|$ for some $y¥in¥theta_{x}$ , $y¥pi t=x$}.

$ T_{x}=¥inf$ { $T(¥theta_{x})|¥theta_{x}$ is a negative semitrajectory through $¥mathrm{x}$ ] and $T(U)=$
$¥sup$ { $T(¥theta_{x})|¥theta_{x}¥subset F(x)$ for some $x¥in U$ }.

We recall that $X$ is called rim-compact if for each $x¥in X$ there is a neigh-
bourhood $U$ of $x$ such that $¥partial U$ is compact. It is easy to show that if $X$ is
Hausdorff and rim-compact then $X$ is regular (see [3] p. 42). Throughout the
paper $X$ stands for a rim-compact, Hausdorff space. Also we recall the following:

$¥lambda^{+}(x)=¥{y|$ there is a net $¥{t_{i}¥}$ (in $R^{+}$ ) diverging to $+¥infty$ such that the net
$¥{x¥pi t_{i}¥}$ converges to $y$},

$J^{+}(x)=¥{y|$ there are nets $¥{x_{i}¥}$ converging to $x$ , $¥{t_{i}¥}$ (in $R^{+}$) diverging to
$+¥infty$ such that $¥{x_{i}¥pi t_{i}¥}$ converges to $y$}.

2. Start Sets.
We thank the referee for suggesting the following proposition as the basic

Iesult leading to our earlier propositions (corollaries 2. 1 and 2. 2).
Proposition 2. 1. Given an $Isd$-system on a rim-compact space $X$, a point

$.x¥in X$ is a start point if and only if a $y^{¥rightarrow 0}$ as $y¥rightarrow x$ where for any $y¥in X$, a $y^{=}$

$-¥sup¥{t¥geq 0| y¥in X¥pi t¥}$ .
Proof. Let $x$ be a start point. Let $¥{y_{i}¥}$ be a net converging to $x$ such

that the net {a $yi$ } does not converge to 0, that is, there exists an $e>0$ . such
that $-¥alpha_{x}.>¥epsilon$ for all $i$ . Let $z_{i}¥in X$ be such that $z_{i}¥pi¥epsilon=t_{i}$ . Note that the net

$¥{z_{i}¥}$ cannot have a subnet converging to $x$ . Therefore there is a neighourhood
$U$ of $x-¥partial U$ may be assumed to $¥backslash ¥mathrm{b}¥mathrm{e}$ compact-such that the net $¥{z_{i}¥}¥subset C(U)$

ultimately. Thus there exists $t_{i}¥in[0, ¥epsilon]$ with $z_{i}¥pi t_{i}(^{¥prime}=Zi)¥in¥partial U$ . Let $¥{z^{¥prime}j¥}$ and
$¥{t_{j}¥}$ be subnets of $¥{z_{l}^{¥prime}¥}$ and $¥{t_{i}¥}$ converging to some $z^{¥prime}¥in¥partial U$ and $¥overline{t}¥in[0, ¥epsilon]$

;respectively. Then necessarily $¥overline{t}<¥epsilon$ and $z^{¥prime}¥pi(¥epsilon-¥overline{t})=x$ , a contradiction. The
$¥iota ¥mathrm{o}¥mathrm{t}¥mathrm{h}¥mathrm{e}¥mathrm{r}$ half is obvious.

The following corollaries are immediate:
Corollary 2. 1. Let $x¥in S$ and $fet$ $U$ be a neighbourhood of $x$ . Then there

aexists a neihbourhood $V$ $Qof$ $x$ ) such that $F(V)¥subset U$

Corollary 2.2. Let $x¥in S$. Then there exists a neighbourhood $V$ of $x$ such
Jhat $ T(V)<+¥infty$ .

3. Negative Prolongational Limit Sets.
The importance of the notion of positive prolongation, $D^{+}(x)$ , in the study

of stability was recognized by Ura [4]. The positive prolongational limit set,
$J^{+}(x)$ , introduced essentially by Auslander, Bhatia and Seibert [1], together
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$¥mathrm{W}^{r¥mathrm{i}¥mathrm{t}¥mathrm{h}}$ the positive trajectory $¥nu^{+}(x)$ make up $D^{+}(x)$ . The corresponding sets
$D^{-}(x)$ , $J^{-}(x)$ have also been studied in relation to dynamical systems. Let
$(X, ¥pi, R^{+})$ be a semidynamical system.

Definition. $J^{-}(x)=¥{y$ |$ x¥overline{¥subset}J^{+}(y)¥}$ .
$¥lambda^{-}(x)=¥cup$ { $¥lambda^{-}(¥theta_{x})|¥theta_{x}$ is a principal negative semitrajectory through $x$},

where $¥lambda^{-}(¥theta_{x})$ is as in [2], DEF. 11.
Remark. $y¥in J^{-}(x)$ if and only if there exist nets $¥{y_{i}¥}$ converging to $y$ in

$X$, $¥{t_{i}¥}$ (in $R^{+}$ ) diverging to $+¥infty$ such that $¥{y_{i}¥pi t_{i}¥}$ converges to $x$ in $X$.
Proposition $iJ.1$ . $Foy$ any $x¥in X$, $J^{-}(x)$ is a closed positively invariant set.

Proof. Let $¥{y_{i}¥}$ be a net in $J^{-}(x)$ converging to $y$ . Then $x¥in J^{+}(y_{i})$ and
thus $x¥in J^{+}(y)$ . Hence $J^{-}(x)$ is closed. Moreover, $x¥in J^{+}(y)¥subset J^{+}(y¥pi t)$ for $t>0$

implies $y¥pi t¥in J^{-}(x)$ . Hence $J^{-}(x)$ is positively invariant.
The next proposition is an improved version of a result in an earlier draft.
Proposition 3.2. Let $x¥in X$ be such that $J^{-}(x)$ is compact and nonempty.

Then $¥lambda^{-}(x)$ is non-empty.

Proof. Suppose $¥lambda^{-}(x)$ is empty. If $y(¥in X)$ is such that $x¥in J^{+}(y)$ , then
there exists a negative semitrajectory $¥theta_{x}$ (through $x$) of type $¥mathrm{I}¥mathrm{I}¥mathrm{I}$ or of principal
type such that $¥theta_{x}¥subset J^{+}(y)$ . Since $¥lambda^{-}(¥theta_{x})$ is empty, $¥theta_{x}$ is a closed set.

Let $T¥geq 0$ be such that for any $t¥geq T$, $z¥in¥theta_{x}$ with $z¥pi t=x$ implies $z¥in J^{-}(x)$ .

Let $N=$ {$z¥in¥theta_{x}|z¥pi t=x$ and $t¥geq T$ }. Then $N$ is a closed. There exists a closed
neighbourhood $V$ of $N$ and an open neighbourhood $U$ of $J^{-}(x)$ such that $¥partial U$

is compact and $¥overline{U}¥cap V$ is empty. Let $z¥in¥theta_{x}$ be arbitrary with $z¥pi t_{z}=x$ , where
$t_{z}¥geq T$. Then $y¥in J^{-}(z)$ implies that there exist nets $¥{y_{i}¥}$ $(¥subset U)$ converging to
$y$ and $¥{t_{i}¥}$ in $R^{+}$ diverging to $+¥infty$ such that $y_{i}¥pi t_{i}=z_{i}$ and the net $¥{z_{i}¥}$ converging
to $z$ . Let $T_{i}¥in[0, t_{i}]$ be such that $y_{i}¥pi T_{i}¥in¥partial U$ and also $y_{i}¥pi[0,$ $T_{i}$ ) $¥subset U$. Without
loss of generality we can assume that the net $¥{y_{i}¥pi t_{i}¥}$ converges to a point
$¥overline{y}¥in¥partial U$. If $¥{T_{i}¥}$ has a subnet conveging to say $t^{*}¥in R^{+}$ , then $¥overline{y}=y¥pi t^{*}$ , whence
$¥overline{y}¥in J^{-}(x)$ , a contradiction. Hence the net $¥{T_{i}¥}$ diverges to $+¥infty$ . A similar
contradiction is arrived at if the net $¥{(t_{i}-T_{i})¥}$ is divergent. Thus we may
suppose that $¥{(t_{i}-T_{i})¥}$ has a subnet converging to $¥overline{t}$ and $¥overline{y}¥pi¥overline{t}=z$ . Let $¥{z_{i}¥}$ be
a net in $¥theta_{x}$ with $z_{i}¥pi t_{z_{i}}=x$ , and let the net $¥{t_{z}¥}$ converge to $T(¥theta_{x})$ . Let the
corresponding net $¥{¥overline{y}_{i}¥}$ $(¥subset¥partial U)$ have a subnet $¥{¥overline{y}_{j}¥}$ converging to some $y^{*}¥in¥partial U$ .
The net $¥{z_{j}¥}$ cannot have a convergent subnet for then in case $ T(¥theta_{x})<+¥infty$ ,
$z¥in¥theta_{x}$ and $ z¥pi$ $T(¥theta_{x})=x$ ; otherwise $¥lambda^{-}(¥theta_{x})¥neq¥phi$ . Thus the net $¥{¥overline{t}_{i}¥}$ and therefore
the net $¥{¥overline{t}_{j}+t_{z_{j}}¥}$ is unbounded. Hence $¥overline{z}¥in J^{-}(x)$ , a contradiction. This completes
the proof.

Proposition 3.3. Let $S(¥subset X)$ be closed. Then for any $x¥in X$, $J^{-}(x)$ is
weakly negativefy invariant.

Proof. Let $y¥in¥partial(J^{-}(x))-S$. For weak negative invariance it is sufficient
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to prove that there exist a $t>0$ and $z¥in J^{-}(x)$ such that $z¥pi[0, t]¥subset J^{-}(x)$ andl
$z¥pi t=x$ . Since $S$ is closed, there is a neighbourhood $U$ of $y$ with $¥partial U$ compact
and $ U¥cap S=¥phi$ . Moreover $y¥subset-J^{-}(x)$ impies that there exist nets $¥{y_{i}¥}$ $(¥subset U)|$

converging to $y$ , $¥{t_{i}¥}$ in $R^{+}$ diverging to $+¥infty$ such that $¥{y_{i}¥pi t_{i}¥}$ converges to $x$ .
For each 2, there is $z_{i}$ such that either we have $z_{i}¥pi 1=y_{i}$ or $z_{i}¥pi T_{i}=y_{i}$ , $T_{i}¥in[0,1)|$

and $z¥in S$. If for every neigbourhood $V$ of $y$ the net $¥{z_{i}¥}$ has a subnet in $V$,
then we can find nets $¥{z_{i(V)}¥}$ and $¥{y_{i(V)}¥}$ such that $z_{i(V)}$ as well as $y_{i(V)}¥in V$.
Thus from $¥{t_{i(V)}-1¥}$ diverging to $+¥infty$ and both the above nets obviously

I
converging to $y$ , we get $y¥pi[0,1]¥subset J^{-}(x)$ and $y¥pi 1=y$ . Otherwise, there is a
neighbourhood $V(¥subset U)$ of $y$ with $z_{i}¥in V$. Let $t_{i}(¥in[0,1])$ be such that $ z_{i}¥pi t_{i}¥in$

$¥partial V$. The net $¥{¥tau_{i}¥}$ , where

$¥tau_{i}=¥left¥{¥begin{array}{l}T_{i}-t_{i}¥mathrm{i}¥mathrm{f}z_{i}¥in S,¥¥1-t_{i}¥mathrm{o}¥mathrm{t}¥mathrm{h}¥mathrm{e}¥mathrm{r}¥mathrm{w}¥mathrm{i}¥mathrm{s}¥mathrm{e},¥end{array}¥right.$

is bounded. Let $¥{z_{j}¥pi t_{j}¥}$ and $¥{¥tau_{j}¥}$ be subnets of the above nets converging $¥mathrm{t}¥mathrm{O}^{¥mathrm{J}}$

$z¥in¥partial V$ and $t¥in(0,1$] respectively. Then $z¥pi[0, t]¥subset J^{-}(x)$ and $z¥pi t=y$ . This
completes the proof.

The following example shows that if $S$ is not colosed, then $J^{-}(x)$ need not
be weakly negatively invariant.

Example.
Let $(R^{2}¥supset)X=$ { $(x,$ $y)|$ $x=0$ or $y=($}$¥}¥cup¥{(x, y)$ $|x¥in[-1,0]$ $y¥in(0, ¥infty)$ and

$-1¥leq xy<0¥}$ .
Let the dynamical system on $R^{2}$ determined by the system

$¥frac{dx}{dt}=-x$ , $¥frac{dy}{dt}=y$,

be restricted to $X$. Then, the start point set $S$ is {( $x$ , $y$ ) $|$ $x=-1$ and $y¥in(0,1]$ }.
Obviously, $S$ is not closed. Moreover, for any point $(0, y)¥in X$, $(-1, 0)¥in J^{-}(0$ ,
$y))$ ; whereas any point $(x, 0)$ , $x<-1$ , belongs to $F((-1,0))$ but does not belong
to $((0, y))$ . Hence, $J^{-}((0, y))$ is not weakly negatively invariant.
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