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1. Introduction.
The aim of this paper is to give complete proofs of the theorems mentioned

in [1] and some related remarks.
In the Liapunov direct method for the stability theory of ordinary differential

equations, Liapunov functions play central roles. For functional differential
equations it is shown by many authors (for example, see [2], [3], [4]) that
Liapunov functionals take the place in a natural way. However, the construc-
tion of a Liapunov functional is a big problem in practice, and it is not successful
even for autonomous linear systems.

Razumikhin [5] (also refer to [2; p. 157]) has established a stability theorem
for functional differential equations by utilizing a Liapunov function instead of a
Liapunov functional: Consider a system of functional differential equations

(1) $¥dot{x}(t)=F(t, x_{t})$ ,

where

$x_{t}(s)=x(t+s)$ , $s¥in[-h, 0]$

and $F(t, ¥phi)$ is continuous on a region in $(-¥infty, ¥infty)¥times C([-h, 0], R^{n})$ .
Theorem A [5]. Let $F(t, ¥phi)$ be Lipschitzian in $¥phi$. Then, a sufficient

condition for the zero solution of the system (1) to be uniformly asymptotically
stable is the existence of a continuous function $v(t, x)$ with the properties;

(i) $v(t, x)$ is $positive-definite$ ;

(ii) $v(t, x)$ admits an infinitefy small upper bound;

(iii) along each solution $x(t)$ of (1)
$D^{+}v(t, x(t))¥leqq-c(|x(t)|)$ if $V(t, h;x)¥leqq f(v(t, x(t)))$ ,

where $D^{+}v$ means the Dini-derivative, $f(u)$ and $c(u)$ are continuous functions
with the properties

(2) $f(u)>u$ for $u>0$ and $f(u)-u$ is non-decreasing,

(3) $c(u)$ is $positive-definite$ and non-decreasing,

and
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$V(t, ¥tau; x)=¥sup¥{v(t+s, x(t+s));s¥in[-¥tau, 0]¥}$

for a constant $¥tau¥geqq 0$ .
The essence of this theorem is the condition (iii). It is instructive to

compare the theorem of Razumikhin $¥mathrm{w}¥cdot ¥mathrm{i}¥mathrm{t}¥mathrm{h}$ theorems of the usual type.
A good reference and related topics can be found in [6].

2. Abstract Liapunov function.
As was seen in Theorem A the conditions for Liapunov functions consist

of three parts;

(i) positive-definiteness;
(ii) an infinitely small upper bound;

(iii) a related differential inequality.
The $¥mathrm{L}¥mathrm{i}¥mathrm{a}¥mathrm{p}¥mathrm{u}¥mathrm{n}¥mathrm{o}¥dot{¥mathrm{v}}$ function is connected with the system under consideration only

through a condition of type (iii), while the role of conditions of type (i) and
(ii) is to present an information about the state of the solution from that of a
Liapunov function, and vice versa.

In the present note, we shall restrict our consideration to the topics related
with a condition of type (iii). Therefore, the argument $x$ contained in the
function $v(t, x)$ has a meaning only as a parameter, and there is no difference
whether $x$ means a point $x(t)¥in R^{n}$ or a segment $x_{t}¥in C([-h, 0], R^{n})$ or even the
whole trajectory $x(¥cdot)$ .

In the following (except in §5 and §7), a Liapunov function will mean a
continuous, non-negative function $v(t)$ , and we shall employ the following
notations. Here and henceforth, we set

$V(t, ¥tau)=¥sup¥{v(s);t-¥tau¥leqq s¥leqq t¥}$

for a constant $¥tau¥geqq 0$ .
Definition 1. $v(t)$ is said to be stable, if for any $¥mathrm{e}>0$ and any $s$ there exists

a $¥delta(¥mathrm{e}_{;}s)>0$ such that
$ v(t)¥leqq¥epsilon$ if $t¥geqq s$ and $V(s, ¥tau)¥leqq¥delta(¥epsilon, s)$ .

Definition 2. $v(t)$ is asymptotically stable, if it is $¥dot{¥mathrm{s}}$the arid if for any
$¥epsilon>0$ , any a $>0$ and any $s$ there exists a $T(¥epsilon, ¥alpha, s)¥geqq 0$ such that

$ v(t)¥leqq¥epsilon$ if $t-s¥geqq T(¥epsilon, ¥alpha, s)$ and $ V(s, ¥tau)¥leqq¥alpha$ .

Definition 3. In the above, if $¥delta$ and $T$ can be chosen independently of $s$ ,

the corresponding stability is said to be uniform.
By using these definitions, we can reproduce Theorem A in the following

way.
Theorem B. Let $f(u)$ and $c(u)$ be continuous functions with the properties
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(2) and (3), respectively.
Then $v(t)$ is uniformly asymptotically stable, provided that we have

$D^{+}v(t)¥leqq-c(v(t))$ if $V(t, ¥tau)¥leqq f(v(t))$ .

3. Comparison theorems.
Theorem $¥mathrm{B}$ can be dealt with as a kind of comparison theorem. We shall

discuss this more precisely.
Consider an ordinary differential equation

(4) $¥dot{¥mathrm{u}}=U(t, u)$

in a scalar $u$ , and denote by $u(t, s, ¥alpha)$ and $r(t, s, ¥alpha)$ the maximal solution of (4 $¥rangle$

through $(s, ¥alpha)$ to the right and to the left, respectively.
First of all, we shall prove the following lemmas.
Lemma 1. Suppose that

(5) $D^{+}v(t)¥leqq U(t, v(t))$ if $v(s)¥leqq r(s, t, v(t))$ for $aff$ $s¥in[t-¥tau, t]$ .

Then we have

$v(t)¥leqq u(t, a, ¥alpha)$ for $aff$ $t¥geqq a$

whenever $v(s)¥leqq r(s, a, ¥alpha)$ for $s¥in[a-¥tau, a]$ .

idhliProof. Conser te scaar equaton

$¥dot{u}=¥left¥{¥begin{array}{l}U(t,u)¥¥U(t,u)+¥epsilon(t-a)¥end{array}¥right.$ $tt¥leqq a>a$

for an $¥epsilon>0$ , and let $u(t, ¥epsilon)$ be a solution of this equation satisfying $u(t, ¥epsilon)=$

$r(t, a, ¥alpha+¥epsilon)$ for $t¥leqq a$ . Then the standard arguments will give

$v(t)<u(t, ¥epsilon)$ for $t¥geqq a$ .

Thus the proof of Lemma 1 will be completed by letting $¥epsilon¥rightarrow 0$ .

Lemma 2. Let $f(t, u)$ and $c(t, u)$ be continuous functions which satisfy
the conditions (2) and (3) for each fixed $t$ .

If $v(t)$ satisfies
(6) $D^{+}v(t)¥leqq-c(t, v(t))$ if $V(t, ¥tau)¥leqq f(t,¥dot{v}(t))$ ,

then there exists a continuous function $U(t,¥dot{u})$ , $U.(t, u)<0$ for $u>0$, for which
the condition (5) holds. Actually, $U(t, u)$ can be given by

(7) $U(t, u)=-¥min¥{¥frac{1}{3¥tau}u$ , $¥frac{1}{¥tau}¥min_{t¥leqq s¥leqq t+¥tau}[f(s,$ $¥frac{2}{3}u)-’¥frac{2}{3}u]$, $c(t, u)¥}$ .

Proof. Since $U(t, u)¥geqq-c(t, $u), it is sufficient to prove that $v(s)¥leqq r(s,$ $t_{¥nu}$

$v(t))$ for $s¥in[t-¥tau, $t] implies $V(t;¥tau)¥leqq f(¥mathrm{r}, v(t))$ or that
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$¥sup_{t-¥tau¥leqq s¥leqq t}r(s, t, ¥alpha)¥leqq f(t, ¥alpha)$ for any $(t, ¥alpha)$ , $¥alpha¥geqq 0$ .

Since $U(t, u)¥geqq-u/(3¥tau)$ , we have

$ r(s, t, ¥alpha)¥leqq¥alpha e-¥frac{1}{3¥tau}(s-t)¥frac{1}{3}¥leqq¥alpha e¥leqq¥frac{3}{2}¥alpha$ for $s¥in[t-¥tau, t]$ .

By the monotonicity, clearly

$U(t, u)¥geqq-¥frac{1}{¥tau}¥min_{t¥leqq s¥leqq t+¥tau}¥{f(s, ¥alpha)-¥alpha¥}$

if $u¥leqq 3¥alpha/2$. Therefore, for $s¥in[t-¥tau, t]$ ,

$r(s, t, ¥alpha)=¥alpha-¥int_{s}^{t}U(p, r(p, t, ¥alpha))dp$

$¥leqq¥alpha+¥frac{1}{¥tau}¥int_{s}^{t}¥min_{p¥leqq q¥leqq p+¥tau}¥{f(q, ¥alpha)-¥alpha¥}dp$ .

iSince $p¥in[s, t]¥subset[t-¥tau, t]$ implies $t¥in[p,p+¥tau]$ , we have

$r(s, t, ¥alpha)¥leqq¥alpha+¥frac{1}{¥tau}¥int_{s}^{t}¥{f(t, ¥alpha)-¥alpha¥}dp¥leqq f(t, ¥alpha)$

for all $s¥in[t-¥tau, t]$ .
Lemma 3. If $U(t, u)¥leqq 0$ for $afl(t, u)$ , $u¥geqq 0$ , if $U(t, u)$ is non-increasing

in $u$ for each fixed $t$ and if

(8) $¥int^{¥infty}U(t, u)dt=-¥infty$ for each fixed $u>0$,

then any non-negative solution of (4) tends to zero as $ t¥rightarrow¥infty$ .
Proof. Since $U(t, u)¥leqq 0$ , any non-negative solution $u(t)$ of (4) is non-

increasing, and hence there exists a $¥beta¥geqq 0$ such that $ u(t)¥rightarrow¥beta$ as $ t¥rightarrow¥infty$ and $ u(t)¥geqq¥beta$

for all $t$ . Therefore, we have

$¥beta-u(a)¥leqq¥beta-u(t)=¥int_{t}^{¥infty}U(s, u(s))ds¥leqq¥int_{t}^{¥infty}U(s, ¥beta)ds$

which yields a contradiction unless $¥beta=0$ .
A sufficient condition for $U(t, u)$ defined by (7) to satisfy the condition

$|(8)$ is the foflowing: In addition to the conditions (2) and (3) (for each fixed
$t)$ , the continuous functions $f(t, u)$ and $c(t, u)$ satisfy

(9) $f(t, u)-u¥geqq k(u)>0$ for $u>0$,

(10) $0¥leqq c(t, u)¥leqq K(u)$ ,

(11) $¥int^{¥infty}c(t, u)dt=¥infty$ for each fixed $u>0$,
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where $k(u)$ and $K(u)$ are continuous.
We shall prove this: Put

$¥rho(t, u)=¥mathrm{m}¥mathrm{i}¥mathrm{n}¥{¥frac{1}{3¥tau}u$, $¥frac{1}{¥tau}¥min_{t¥leqq s¥leqq t+¥tau}[f(s,$ $¥frac{2}{3}u)-¥frac{2}{3}u]¥}$

and

$¥rho(u)=¥min¥{¥frac{1}{3¥tau}u$ , $k(¥frac{2}{3}u)¥}¥leqq¥rho(t, u)$ .

Let $¥alpha>0$, $s¥geqq 0$, $G>0$ be given. Choose $¥mathcal{T}^{*}(¥alpha, G)$ and $¥gamma(s, ¥alpha, G)$ so that
$¥rho(¥alpha)¥gamma^{*}(¥alpha, G)¥geqq G$ ,

$¥int_{s}^{s+¥gamma(s,¥mathrm{a},G)}c(t, ¥alpha)dt¥geqq G+|K(¥alpha)-¥rho(¥alpha)|¥mathit{7}^{*}(¥alpha, G)$,

and then

$-¥int_{s}^{s+¥gamma(s,¥alpha,G)}U(t, ¥alpha)dt¥geqq G$.

In fact, clearly we have

$-¥int_{s}^{s+¥gamma(s,¥alpha,G)}U(t, ¥alpha)dt=¥int_{t_{1}}¥rho(t, ¥alpha)dt+¥int_{t_{2}}c(t, ¥alpha)dt$ ,

where

$I_{1}=¥{t¥in[s, s+¥gamma(s, ¥alpha, G)];p(t, ¥alpha)¥leqq c(t, ¥alpha)¥}$

and $I_{2}=[s, s+¥mathcal{T}(s, ¥alpha, G)]-I_{1}$ . Therefore,

$¥int_{I_{1}}¥rho(t, ¥alpha)dt¥geqq¥rho(¥alpha)¥gamma^{*}(¥alpha, G)¥geqq G$

if $¥int_{I_{1}}dt¥geqq ¥mathcal{T}^{*}(¥alpha, G)$ , and otherwise

$-¥int_{s}^{s+¥gamma(s,¥alpha.G)}U(t, ¥alpha)dt=¥int_{s}^{s+¥gamma(s,¥alpha,G)}c(t, ¥alpha)dt+¥int_{t_{1}}$ $¥{¥rho(t, ¥alpha)-c(t, ¥alpha)¥}dt$

$¥geqq¥int_{s}^{s+¥gamma(s.¥alpha,G)}c(t, ¥alpha)dt+$ $¥{¥rho(¥alpha)-K(¥alpha)¥}¥int_{I_{1}}dt¥geqq G$.

As will be clear from the proof in the above, if the integral in (11) is
uniformly divergent, that is, if we can choose $¥mathit{7}(¥alpha, G)$ for any $¥alpha>0$ and $G>0$

so that

$¥int_{s}^{s+¥gamma(¥mathrm{a},G)}c(t, ¥alpha)dt¥geqq G$

for all $s¥geqq 0$ , then so is the integral in (8).
Now, the following lemma will be proved.
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Lemma 4. In Lemma 3, if the integral in (8) is uniformly divergent,
then the approach of the non-negative solutions of (4) to zero is uniform.

Proof. Let $¥alpha>0$ be given, and choose $¥mathit{7}(¥alpha)$ so that

$¥int_{s}^{s+¥gamma(¥alpha)}U$($t$ , $¥frac{¥alpha}{2}$) $ dt<-¥alpha$ for all $s¥geqq 0$ .

Let $u(t)$ be a non-negative solution of (4) satisfying
$¥mathrm{o}$

$ u(s)¥leqq¥alpha$ and $u(t)¥geqq¥frac{¥alpha}{2}$ for $t¥in[s, s+¥mathit{7}(¥alpha)]$

for a fixed $s$ . Then

$u(s+¥mathcal{T}(¥alpha))=u(s)+¥int_{s}^{s+¥gamma(¥alpha)}U(t, u(t))dt$

$¥leqq¥alpha+¥int_{s}^{s+¥gamma(¥alpha)}U$($t$ , $¥frac{¥alpha}{2}$) $dt<0$,

which yields a contradiction. Thus $ u(s)¥leqq¥alpha$ implies

$u(t)¥leqq¥frac{¥alpha}{2}$ for all $t¥geqq s+T(¥alpha)$ .

Therefore, by choosing an integer $m(¥epsilon, ¥alpha)$ so that
$¥epsilon 2^{m(¥epsilon,¥alpha)}¥geqq¥alpha$

for given $¥epsilon>0$ and $¥alpha>0$ , we have

$ u(t)¥leqq¥epsilon$ for all $t¥geqq s+¥sum_{k=0}^{m(¥mathrm{e},¥alpha)}¥mathcal{T}(¥frac{¥alpha}{2^{k}})$ ,

whenever $ u(s)¥leqq¥alpha$ .
Thus, we have a generalization of Theorem B.
Theorem 1. Suppose that the condition (6) holds for continuous functions

$f(t, u)$ and $c(t, u)$ which satisfy the conditions (2), (3) for each fixed $t$ and the
conditions (9), (10) and (11).

Then $v(t)$ is asymptotically stable.
Moreover, if the integral in (11) is uniformly divergent, then the asymptotic

stability is uniform.
Remark. Clearly, the conditions for $f(t, u)$ and $c(t, u)$ are interchangeable,

that is, the conditions (9), (10), (11) in Theorem 1 can be replaced by

(8 $c(t, u)¥geqq k(u)>0$ for $u>0$ ,

(10’) $u¥leqq f(t, u)¥leqq K(u)$ ,

(11’) $¥int^{¥infty}¥{f(t, u) -u¥}dt=¥infty$ for each fixed $u>0$ .for each fixed $u>0$ .



On Liapunov-Razumikhin Type Theorems for Functional Differential Equations 231

Moreover, under the condition (9) $f(t, u)$ can be replaced by a function
which is independent of $t$ , and $¥mathrm{i}¥mathrm{h}¥mathrm{e}$ same is true for $c(t, u)$ under the condition
$(9^{¥prime})$ .

4. The case where $c=0$ .
Lemma 2 is valid even if $c(t, u)=0$ or $f(t, u)=u$. But in this case the

relation (7) gives $U(t, u)=0$ , and Lemma 1 shows that

$v(t)¥leqq V(a, ¥tau)$ for all $t¥geqq a$ ,

that is, $V(t, ¥tau)$ is non-increasing in $t$ .
In this $¥sec¥dot{¥mathrm{t}}$ion, we shall present further results in the case $c(t, u)=0$.
Theorem 2. Let $f(u)$ be a continuous, increasing function such that $f(u)>u$

for $u>0$ and $f(0)=0$.
Suppose that

$D^{+}v(t)¥leqq 0$ if $V(t, ¥tau)¥leqq f(v(t))$ .

Then we have
(i) $v(t)¥leqq¥max¥{v(s),f^{-1}(V(s, ¥tau))¥}$ for $alf$ $t¥geqq s$ ,

(ii) $t¥lim_{¥rightarrow¥infty}v(t)$ exists.

Proof, (i) Suppose that the conclusion is not true. Then there exists a
$t_{1}>s$ with

$v(t_{1})>¥max¥{v(s),f^{-1}(V(s, ¥tau))¥}$ ,

and hence we can find an $r¥in[s, t_{1}]$ such that

$D^{+}v(r)>0$ and $v(r)¥geqq f^{-1}(V(s, ¥tau))$ .

Since $V(r, ¥tau)¥leqq V(s, ¥tau)$ as mentioned in the above, we have $f(v(r))¥geqq V(r, ¥tau)$ ,

which yields a contradiction.
(ii) Since $0¥leqq v(t)¥leqq V(a, ¥tau)$ for all $t¥geqq a$ ,

$ 0¥leqq¥beta(=¥varliminf_{t¥rightarrow¥infty}v(t))¥leqq¥alpha(=¥varlimsup_{t¥rightarrow¥infty}v(t))<¥infty$ .

Suppose that $¥alpha>¥beta$ . For every $¥epsilon>0$ we can find a $T(¥epsilon)$ such that

$ V(t, ¥tau)¥leqq¥alpha+¥epsilon$ for all $t¥geqq T(¥epsilon)$ ,

because $¥varlimsup_{t¥rightarrow¥infty}V(t, ¥tau)=¥varlimsup_{t¥rightarrow¥infty}v(t)=¥alpha$ for a finite $¥tau¥geqq 0$. Let $¥epsilon>0$ be chosen so small

that $ f(¥alpha-¥epsilon)>¥alpha+¥epsilon$ and that $¥alpha>¥beta+¥epsilon$ . Since it is possible to find an $s¥geqq T(¥epsilon)$

such that $ v(s)<¥alpha-¥epsilon$, the property (i) implies

$ v(t)¥leqq¥max¥{v(s),f^{-1}(V(s, ¥tau))¥}<¥alpha-¥epsilon$ for all $t¥geqq s$ ,

which contradicts the fact that $¥varlimsup_{t¥rightarrow¥infty}v(t)=¥alpha$ .
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Thus we must have $¥alpha=¥beta$ .
Theorem 3. In addition to the conditions in Theorem 2, assume that for

any sequence $¥{t_{m}¥}$ , $ t_{m}¥rightarrow¥infty$ , $D^{+}v(t_{m})$ does not converge to zero if $v(s+t_{m})$ converges
to a non-zero constant for $s¥in[-¥tau, 0]$ and $f(v(t_{m}))¥geqq V(t_{m}, ¥tau)$ .

Then $v(t)$ is uniformly asymptotically stable.
Proof. The uniform stability of $v(t)$ is clear. Now, we shall show that

for any $¥alpha>0$ there exists a $T(¥alpha)¥geqq 0$ for which

(12) $f(v(t))¥leqq V(s, ¥tau)$ for all $t-s¥geqq T(¥alpha)$

if $ f^{-1}(¥alpha)¥leqq V(s, ¥tau)¥leqq¥alpha$ and $s¥geqq 0$ .
Suppose this is false. Then there exists a sequence $¥{s_{m}¥}$ such that

$ f^{-1}(¥alpha)¥leqq V(s_{m}, ¥tau)¥leqq¥alpha$ , $s_{m}¥geqq 0$

and that

$f(v(t))>V(s_{m}, ¥tau)$ for a $t¥geqq s_{m}+2m$ .

The last inequality implies

$f(v(s_{m}+t))>V(s_{m}, ¥tau)$ for all $t¥in[0,2m]$ ,

because if $f(v(t^{*}))<V(s_{m}, ¥tau)$ for a $t^{*}¥geqq s_{m}$ , we have $f(v(t))¥leqq¥max¥{f(v(t^{*}))$ ,
$V(t^{*}, ¥tau)¥}¥leqq V(s_{m}, ¥tau)$ for all $t¥geqq t^{*}$ by (i) of Theorem 2. Therefore

$f(v(s_{m}+t))>V(s_{m}+t, ¥tau)$ for all $t¥in[0,2m]$ ,

because $V(t, ¥tau)$ is non-increasing. Hence

$D^{+}v(s_{m}+t)¥leqq 0$,

that is, $v(s_{m}+t)$ is non-increasing on $[0, 2m]$ . Since

$f^{-2}(¥alpha)-¥alpha¥leqq v(s_{m}+2m)-v(s_{m}+m)¥leqq 0$,

we can find a $t_{m}¥in[s_{m}+m, s_{m}+2m]$ such that

$v(t_{m})-v(t_{m}-¥tau)¥rightarrow 0$ , $D^{+}v(t_{m})¥rightarrow 0$ as $ m¥rightarrow¥infty$ ,

there $f^{-m}(¥alpha)=f^{-1}(f^{-(m-1)} (¥alpha))$ . On the other hand, since $¥alpha¥geqq v(t_{m})¥geqq f^{-2}(¥alpha)$ ,
we can select a subsequence $¥{v(t_{m_{k}})¥}$ which converges to a non-zero constant $c$ .
Thus, we have

$f(v(t_{m_{k}}))¥geqq V(t_{m_{k}}, ¥tau)$ , $ t_{m_{k}}¥rightarrow¥infty$, $D^{+}v(t_{m_{k}})¥rightarrow 0$ , $v(t_{m_{k}}+s)¥rightarrow c$

as $ k¥rightarrow¥infty$ for any $s¥in[-¥tau, 0]$ , which contradicts the assumption.
It is obvious that $f^{-m}(¥alpha)$ tends to zero as $ m¥rightarrow¥infty$ for any fixed $¥alpha>0$, and

hence there exists an integer $m(¥alpha, ¥epsilon)$ for a given $¥alpha>0$ and $¥epsilon>0$ such that
$ f^{-m}(¥alpha)¥leqq¥epsilon$ for all $m¥geqq m(¥alpha, ¥epsilon)+1$.

Now we can define a desired number $T(¥epsilon, ¥alpha)$ by
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$ T(¥epsilon, ¥alpha)=T(¥alpha)+T(f^{-1}(¥alpha))+¥cdots+T(f^{-m(¥alpha,¥epsilon)}(¥alpha))+m(¥alpha, ¥epsilon)¥tau$

for the number $T(¥alpha)$ in (12). In fact, if $f^{-k-1}(¥alpha)¥leqq V(s, ¥tau)¥leqq f^{-k}(¥alpha)$ , we have

$V(s+T(f^{-k}(¥alpha))+¥tau, ¥tau)¥leqq f^{-k-1}(¥alpha)$ ,

and hence $ V(a, ¥tau)¥leqq¥alpha$ implies

$ v(t)¥leqq V(t, ¥tau)¥leqq f^{-m(¥alpha,¥epsilon)-1}(¥alpha)¥leqq¥epsilon$ for all $t¥geqq a+T(¥epsilon, ¥alpha)$ .

Remark. When $v(t)=v(t, x)$ depends on a parameter $x$ , to get the uniformity

of asymptotic stability with respect to $x$ , the assumption in Theorem 3 should be
modified in the following way: For any sequence $¥{t_{m}, x_{m}¥}$ , $ t_{m}¥rightarrow¥infty$ , $D^{+}v(t_{m}, x_{m})$

never converges to zero if $v(t_{m}+s, x_{m})$ converges to a non-zero constant and if
$f(v(t_{m}, x_{m}))¥geqq V(t_{m}, ¥tau; x_{m})=¥sup¥{v(t_{m}+s, x_{m});s¥in[-¥tau, 0]¥}$ .

Yorke [7] has given a theorem of the same type.

5. The case where $f=u$ .
When $v(t)$ satisfies

(13) $D^{+}v(t)¥leqq-c^{*}(t, v(t))$ if $v(t)¥geqq V(t, ¥tau)$

for a continuous function $c^{*}(t, ¥mathrm{u})¥mathrm{w}^{-}¥mathrm{i}¥mathrm{t}¥mathrm{h}$ the property (3) for each fixed $t$ , we
may suspect the existence of continuous functions $f(t, u)$ and $c(t, u)$ as those in
Lemma 2.

However, to show this, we must investigate how $v(t)$ depends on the para-

meters.
Suppose that for a function $x(¥cdot)$ under consideration (a solution of the

system (1) or not) $v(t)=v(t, x)$ depends on the $¥mathrm{h}_{1}$-segment of $x(¥cdot);x(t+s)$ for
$s¥in[-h_{¥mathrm{h}}, 0]$ and $D^{+}v(t, x)$ on the $¥mathrm{h}_{2}$-segment of $x(¥cdot)$ , where $h_{2}¥geqq h_{1}¥geqq 0$ . Since
the relation $v(t, x)¥geqq V(t, ¥tau; x)$ is affected by the $(¥mathrm{h}_{1}+¥tau)$ -segment of $x(¥cdot)$ only,
$¥tau$ will be chosen so that $h_{1}+¥tau¥geqq h_{2}$ .

Assume the following condition: There exist two functions $¥eta(t, ¥epsilon)$ and $f^{*}$

$(t, u, ¥epsilon)$ for any $¥epsilon>0$ such that $f^{*}(t, u, ¥epsilon)$ satisfies the condition (2) for fixed
$(t, ¥epsilon)$ and that

(14) $|D^{+}v(t, x)-D^{+}v(t, y)|¥leqq¥epsilon$ if $¥sup_{-h_{2}¥leqq s¥leqq 0}|x(t+s)-y(t+s)|¥leqq¥eta(t, ¥epsilon)$ ,

(15) for any $(t, x, ¥epsilon)$ with $f^{*}(t, v(t, x), ¥epsilon)¥geqq V(t, ¥tau; x)$ there exists a $y$ for
which

$v(t, y)=V(t, ¥tau; y)¥geqq v(t, x)$ and $¥sup_{-h_{2}¥leqq s¥leqq 0}|x(t+s)-y(t+s)|¥leqq¥epsilon$ .

Here clearly $¥eta(t, ¥epsilon)$ and $f^{*}(t, u, ¥epsilon)$ can be assumed to be non-decreasing in $¥epsilon$

for fixed $(t, u)$ . Hence the function $f(t, u)$ defined by
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$f(t, u)--f^{*}(t,$ $u$ , $¥eta$($t$ , $¥frac{1}{2}c^{*}(t, u)$ )$)$

satisfies the condition (2) for each fixed $t$ . If

$f(t, v(t, x))¥geqq V(t, ¥tau; x)$ ,

we can find a $y$ such that $v(t, y)=V(t, ¥tau; y)¥geqq v(t, x)$ and that

$¥sup_{-h_{1}¥leqq s¥leqq 0}|x(t+s)-y(t+s)|¥leqq¥eta(t,$ $¥frac{1}{2}c^{*}(t, v(t, x)))$.

Therefore (13) and (14) imply

$D^{+}v(t, x)¥leqq-c^{*}(t, v(t, y))+¥frac{1}{2}c^{*}(t, v(t, x))¥leqq-¥frac{1}{2}c^{*}(t, v(t, x))$ .

Thus, we have the relation (6) with $c(t, u)=c^{*}(t, u)/2$ .
Theorem 4. Suppose that $v(t, x)$ satisfies the conditions (13), (14) and

(15).
Then, there exist continuous functions $f(t, u)$ and $c(t, u)$ with all properties

given in Lemma 2.
Remark. In the case where $h_{1}=0$ , the condition (15) will be satisfied if

$¥theta v/¥partial x¥neq 0$ at every point $(t, x)$ with $v(t, x)>0$.

A theorem of the above type was shown in [5], but in [5] the condition
(15) is not mentioned explicitly.

6. A relationship between the theorems of Liapunov type and of
Razumikhin type.

In this section, we shall show that an additional condition on $f(t, u)$ is sufficient
to construct a Liapunov function which satisfies a differential inequality of the
usual type.

Theorem 5. Let $f(t, u)$ and $c(t, u)$ be continuous functions such that
$f(t, u)>u$ and $c(t, u)>0$ for $u>0$ and that $f(t, u)/u$ and $c(t, u)$ are non-decreasing

for fixed $t$ .

If a Liapunov function $v(t)$ satisfies the condition (6), then there exists $a$

Liapunov function $w(t)$ satisfying

(16) $v(t)¥leqq w(t)¥leqq V(t, ¥tau)$

and

(17) $D^{+}w(t)¥leqq-c^{*}(t, w(t))$

for a continuous function $c^{*}(t, u)$ with the property (3) for each fixed $t$ .

Proof. Putting
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$¥alpha(t, u)=¥frac{1}{¥tau}¥log[¥inf_{-¥tau¥leqq s¥leqq 0}¥frac{u}{f_{u}^{-1}(t-s,u)}]$ ,

it will be shown that the function $w(t)$ defined by

$w(t)=¥sup_{-¥tau¥leqq s¥leqq 0}e^{¥alpha(t+s,v(t+s))s}v(t+s)$

has the required properties, where $f_{u}^{-1}(t, u)$ denotes the inverse function of $f(t, u)$

with respect to $u$ . Here we should note that $f(t, u)$ is increasing in $u$ and hence
$f_{u}^{-1}(t, u)$ exists.

Since $¥alpha(t, u)¥geqq 0$ , the relation (16) is immediate.
We shall discuss the inequality (17). Clearly we can choose an $ s(t, h)¥in$

$[-¥tau, 0]$ for any $h>0$ so that

$w(t+h)=e^{¥alpha(¥rho(t,h),y(¥rho(t,h)))s(t,h)}v(¥rho(t, h))$ ,

where $¥rho(t, h)=t+h+s(t, h)$ for brevity. Furthermore, $s(t, h)$ can be assumed to
tend $s(t, 0)$ as $h¥rightarrow 0$.

Case 1. $s(t, h)+h¥leqq 0$ for every small $h>0$.
Under the assumption,

$w(t)¥geqq e^{¥alpha(¥rho(t,h),v(¥rho(t,h)))(h+s(t,h))}v(¥rho(t, h))$ ,

and hence

$w(t+h)-w(t)¥leqq w(t+h)¥{1-e^{¥alpha(¥rho(t,h),v(¥rho(¥mathrm{f},h)))h}¥}$ .

Since $u/f¥overline{u}^{1}(t, u)$ is non-decreasing in $u$ , $¥alpha(t, u)$ is non-decreasing in $u$ , too.
Therefore, by noting $w(t+h)¥leqq v(¥rho(t, h))$ , we have

$w(t+h)-w(t)¥leqq w(t+h)¥{1-e^{¥alpha(¥rho(t,h)w(t+h))h}’¥}$ ,

which implies that

$D^{+}w(t)¥leqq-¥alpha(¥rho(t, 0), w(t))w(t)$ .

Case 2. $s(t, h)+h>0$ for an $h$ arbitrary small.
In this case, clearly $s(t, 0)=0$, that is, $w(t)=v(t)$ . Moreover, for any $s¥in[-¥tau, 0]$

$v(t)¥geqq e^{a(t+s,v(t+s))s}v(t+s)¥geqq e^{-¥alpha(t+s,v(t+s))¥tau}v(t+s)$

$¥geqq¥frac{f^{--1}(t,v(t+s))}{v(t+s)}¥cdot v(t+s)=f_{u}^{-1}(t, v(t+s))$ ,

that is, $f(t, v(t))¥geqq V(t, ¥tau)$ . Therefore, by the assumption

$D^{+}v(t)¥leqq-c(t, v(t))=-c(t, w(t))$ .

On the other hand, since

$w(t+h)-w(t)=w(t+h)-v(¥rho(t, h))+v(t+h+s(t, h))-v(t)$
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$=¥{e^{a(¥rho(t,h),v(¥rho(t,h)))s(t,h)}-1¥}v(¥rho(t, h))$

$+v(t+h+s(t, h))-v(t)$ ,

we have

$¥frac{w(t+h)-w(t)}{h}¥leqq¥alpha(¥rho(t, h), v(¥rho(t, h)))v(¥rho(t, h))¥frac{s(t,h)}{h}$

$+D^{+}v(t)¥{1+¥frac{s(t,h)}{h}¥}+¥epsilon(t, h)$

$¥leqq¥max¥{-¥alpha(¥rho(t, h), v(¥rho(t, h)))v(¥rho(t, h)), D^{+}v(t)¥}+¥epsilon(t, h)$,

because

$-1¥leqq¥frac{s(t,h)}{h}¥leqq 0$ and $A¥lambda+B(1-¥lambda)¥leqq¥max¥{A, B¥}$ for $¥lambda¥in[0,1]$ ,

where $¥epsilon(t, h)¥rightarrow 0$ as $h¥rightarrow 0$ . From this it follows

$ D^{+}w(t)¥leqq-¥min$ $¥{¥alpha(t, w(t))w(t), c(t, w(t))¥}$ .

Thus, by putting

$c^{*}(t, u)=¥min¥{c(t, u),¥inf_{-¥tau¥leqq s¥leqq 0}¥alpha(t+s, u)u¥}$

the condition (17) holds good.

7. Stability problem of a system.

Now back to the stability problem of the zero solution of the system (1).
Consider a Liapunov function $v(t, x)$ which depends on the solution $x(¥cdot)$ of

the system (1). As was stated in Section 2, under the assumption that $v(t, x)$

is positive definite, that is,

(18) $v(t, x)¥geqq a(|x(t)|)$

for a positive definite function $¥mathrm{a}(¥cdot)$ , $x(t)$ keeps small or tends to zero as $ t¥rightarrow¥infty$

according to the same behavior of $v(t, x)$ .
Therefore, under the condition (18), in order to show the (asymptotic)

stability of the zero solution of (1) from that of $v(t, x)$ , we must give a con-
dition to guarantee

$V(a+¥tau, ¥tau; x)¥rightarrow 0$ as $¥sup_{-h¥leqq s¥leqq 0}|x(a+s)|¥rightarrow 0$.

If $v(t, x)$ admits an infinitely small upper bound, that is, $v(t, x)¥leqq b(¥sup_{-h¥leq s¥leq 0}$

$|x(t+s)|)$ for a continuous function $b(¥cdot)$ , $b(0)=0$, this follows from the fact

(19) $¥sup_{-¥tau-h¥leqq s¥leqq 0}|x(a+¥tau+s)|¥rightarrow 0$ as $¥sup_{-h¥leqq s¥leqq 0}|x(a+s)|¥rightarrow 0$ .

It is obvious that (19) holds if and only if the zero solution of the system



On Liapunov-Razumikhin Type Theorems for Functional Differential Equations 23T

(1) is unique for the initial value problem.

Furthermore, in order that (19) holds uniformly in the choice of $a$ , a
necessary and sufficient condition is the uniqueness of the zero solution of $¥mathrm{e}¥mathrm{v}¥mathrm{e}¥mathrm{r}_{¥vee}¥mathrm{v}_{¥mathrm{J}}-$

system

$¥dot{x}(t)=G(t, x_{t})$ , $G(t, ¥phi)¥in H(F)$ ,

for the initial value problem, whenever the hull $H(F)$ of $F(t, ¥phi)$ is compact in
the compact-open topology (see [8; Lemma 1], and for a related problem see $¥cdot$

[9] $)$ , where $G(t, ¥phi)¥in H(F)$ means that for a sequence $¥{s_{k}¥}$ , $F(t+s_{k}, ¥phi)$ convergea
to $G(t, ¥phi)$ uniformly on any compact set in the domain of $F(t, ¥phi)$ . The latter
condition holds if $F(t, ¥phi)$ satisfies a Lipschitz condition or

(20) $|F(t, ¥phi)|¥leqq L¥sup_{-h¥leqq s¥leqq 0}|¥phi(s)|$

for a constant $L>0$.
Combining the above, we have the following:
Theorem 6. Let $v(t, x)$ be a Liapunov function with the properties;
(i) $positive-definite$ ,

(ii) admits an infinitefy small upper bound,
and suppose that the zero solution of the system (1) is unique for the initial
value problem.

Then the zero solution of (1) is (asymptoticaify) stable if $v(t, x)$ is
(asymptotica$ffy$ ) stable.

Moreover, if $F(t, ¥phi)$ satisfies the condition (20), then the uniformity of the
stability of $v(t, x)$ implies that of the zero solution of (1).

Remark. In the above, we understand that the stability of $v(t, x)$ is
uniform in the parameter $x$ . Clearly this fact is satisfied if $f(t, u)$ and $c(t, u)$

is independent of $x$ in Theorems 1 and 2 (also, refer the remark of Theorem
3).

8. Instability.
If it is possible to show that $v(t)$ sat.isfies

(21) $V(t, ¥tau)¥leqq f(t, v(t))$ for all $t$ ,

then the relation (6) becomes a differential inequality of the usual type

$D^{+}v(t)¥leqq-c(t, v(t))$ .

In the case where $v(t)=v(t, x(t))$ for a solution $x(¥cdot)$ of (1), the inequality
(21) means that the set

$¥Omega=$
$¥{¥phi¥in C([-¥tau, 0], R^{n});¥sup_{-¥tau¥leqq s¥leqq 0}v(.t+s, ¥phi(s))¥leqq f(t, v(t, ¥phi(0)))¥}$
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is invariant along the solutions of (1).
$¥mathrm{A}¥mathrm{c}¥mathrm{t}¥mathrm{u}¥mathrm{a}¥mathrm{l}¥mathrm{l}¥dot{¥mathrm{y}}$ , the proof of Theorem A (see [2]) has been carried out by showing

that the $¥mathrm{s}¥mathrm{o}¥mathrm{l}¥dot{¥mathrm{u}}$tion $x_{¥_}(t)$ never goes away from the set $¥Omega$ as long as

$ v(t, x(t))¥geqq¥gamma$

for a $¥gamma>0$ .
For the stability theorem, it is sufficient to prove that the boundary of a

neighborhood of the solution under consideration is never reached by a solution
starting from inside. However, for the instability theorem, we must find a
solution which reaches the boundary of a given neighborhood. Therefore, for a
condition of the type;

$D^{+}v(t, x)¥geqq c(t, v(t, x))$ as long as $ x¥in¥Omega$ ,

we must show that $¥Omega$ is invariant as well as the fact that $¥partial¥Omega$ contains the zero.
In terms of the abstract Liapunov function, we have the following obvious

theorem, where $v(t)$ is said to be unstable if $v(t)$ becomes arbitrarily large. It
should be noted that for $v(t)=v(t, x(t))$ with the solution $x(¥cdot)$ of (1), the
instability of $v(t)$ implies that of the zero solution of (1), if

$v(t, x)¥leqq b(|x|)$ and $ 0¥in¥partial¥Omega$.

Theorem 7. Suppose that for the Liapunov function $v(t)$ we have

(22) $D^{+}v(t)¥geqq c(t, v(t))$ as long as $¥mathrm{v}(¥mathrm{t})$

for a property $P_{t}$ , where $c(t, u)$ is of the type (3) in $u$ and (IV) holds.

If the property $P_{t}$ is invariant, that is, $v(t_{0})¥in Pt_{0}$ implies $¥mathrm{v}(¥mathrm{t})$ for $aff$

$t¥geqq t_{0}$ and if $v(t_{0})¥in P_{t_{0}}$ holds with $v(t_{0})>0$ , then $v(t)$ is unstable.
Theorem 7 is generalization of the theorem given by Hale [3, Theorem 4],

in which $v(t)¥in P_{t}$ means $v(t)>0$ . In the case, the fact that $P_{t}$ is invariant is

clear under the condition (22).
It is of Razumikhin type, if $v(t)¥in P_{t}$ means

$f(v(t))¥geqq V(t, ¥tau)$

for a non-decreasing function $f(u)¥geqq u$ . Moreover, we have the following,

which is a generalization of the idea seen in [10, Theorem 8].
Theorem 8. Suppose that two Liapunov functions $v(t)$ and $w(t)$ satisfy

$D^{+}v(t)¥geqq c(t, v(t))$ and $D^{+}w(t)<c(t, v(t))$

as long as

(23) $f(v(t))¥geqq¥max¥{V(t, ¥tau), W(t, ¥tau)¥}$ .

If the relation (23) with $v(t_{0})>0$ holds at $t=t_{0}$ , then $v(t)$ is unstable.
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Here

$W(t, ¥tau)=¥sup¥{w(s);s¥in[t-¥tau, t]¥}$ .
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