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On a Certain Hypergeometric

Diff.erential System (II)

By Harold EXTON
(University of Salford)

1. Inrtoduction.
This paper is devoted to the study to the partial differential system associated

with Lauricella’s function $F^{(n)}D[9]$ , (where $n$ denotes the number of variables)
further to that discussed by the author in [7] where, althogh certain of the
solutions of the system were givim, others, indispensible to its complete integra-
tion, were overlooked.
The function $F^{(n)}D$ is of particular interest from the point of view of, for example,
the study of certain elliptical and hyperelliptical integrals [1], the Euler-Poisson
equation in several variables [2] and [3], the expectation of an arbitrary power
of any given quadratic form in a normal population of several variables [4] arid
the study of the Lie algebra $SL(n+3C)[10]$ which is connected with certain
aspects of atomic and elementary particle physics.

For brevity in the prelimaries, the reader is referred to [7]. The case $n=2$

has been exhaustively investigated by Erdelyi [6]. Throughout this paper, it is
assumed that the (parameters and variables are all such that any series involved
are convergent, and that exceptional values of the parameters which make any of
the gamma-functions infinite are tacitly excluded.

2. The case where n=3.
All the solutions of the system under consideration when $n=3$ may be

expressed as

(2. 1) $¥int_{c}u^{¥beta_{1}+¥beta_{2}+¥beta_{3}-r(u-1)^{¥gamma-¥alpha-1}(u-x)(u-y)(u-z)du}-¥rho_{1}-¥beta_{2}-¥beta_{3}$

(cf. [7] $¥mathrm{e}¥mathrm{q}$ . (4. 1))
where $C$ is a Pochhammer double-loop with at least one of the six singularities
of the integrand inside one loop.

This gives three possibilities for the form of $¥mathrm{c}$ :
(i) $[a;b]$

(ii) $[a;b, c]$

(iii) $[a, b;c, d]$

where $a$ , $b$ , $c$ , $d$, $e,f$ represents any permutation of the singularities of the inte-
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grand:

0, 1, $¥infty$ , x, y, z.

The singularities not mentioned in each case are taken to be outside the contour;
$[a_{1}, a_{2^{ }},¥cdots ; b_{1}, b_{2^{ }},¥cdots]$ is a short-hand form of $a_{1}$ , $a_{2}$ , $¥cdots$ in one loop, and $b_{1}$ , $b_{2}$ , $¥cdots$

in the other loop of the contour of the?type under consideration.
Cases (i) and (ii) have already been dealt with:

(i) yields $¥left(¥begin{array}{l}6¥¥2¥end{array}¥right)=15$ different possibilities, each of the form $p^{(n)}D$ .

(ii) yields $6¥left(¥begin{array}{l}5¥¥2¥end{array}¥right)=60$ different possibilities, each of the form $G_{B}[11]$ , or its

equivalent $C_{n}^{(1)}$ or $C_{n}^{(2)}[7]$ .
If we consider the number of singularities in each loop and outside the

contour respectively as $P$, $Q$ , $R$ , then, in each of the previous cases, at least one
of these three numbers is unity. For $n¥geqq 3$ , it is clearly possible that valid
contours exist for which all of $P$, $Q$ , $R$ exceed unity, and it is these solutions
which were overlooked by the author in [7].

The case (iii), considered now in some slight detail, gives rise to

1/3 $¥left(¥begin{array}{l}6¥¥2¥end{array}¥right)¥left(¥begin{array}{l}4¥¥2¥end{array}¥right)=30$ distinct solutions.

We consider the integral

(2. 2) $¥int_{[a,b;c,d]}u^{¥beta_{1}+¥beta_{2}+¥beta_{3}-r(u-1)^{¥gamma-¥alpha-1}(u-x)}-¥beta_{1}(u-y)-¥beta_{2}(u-z)-¥beta_{3}du$

and by means of a simple $¥mathrm{b}¥mathrm{i}$-linear transformation of the variable of integration
(cf. [6]), (2. 2) without loss of generality reduces to

(2. 3) $R(x, y, z)¥int_{[0,s^{¥prime}:1,s]}u^{-¥lambda}(u-1)^{-¥mu}(u-l-s)^{-¥nu}(u-s^{¥prime})-y^{¥prime}(u-s^{¥prime¥prime})^{-v^{ll}}du$

where $R(x, y, z)=x^{¥sigma}(1-x)^{¥rho}y^{¥sigma^{¥prime}}(1-y)^{¥rho^{l}}z^{¥sigma^{Jl}}(1-z)^{¥rho^{¥prime¥prime}}(x-y)^{¥tau}(x-z)^{¥tau}(y-z)^{¥tau}$ and $¥lambda$ , $¥mu$ , $¥nu$

etc. depend upon the parameters $¥alpha$ , $¥beta_{1}$ , $¥beta_{2}$ , $¥beta_{3},$ $¥uparrow^{¥wedge}$ and $s$ , $s^{¥prime}$ , and $s^{¥prime¥prime}$ are rational
functions of $x$ , $y$ , $z$ . The factors of the integrand of (2. 3) are now expanded by
means of the formulae

(2. 4) $|$ $(((u-s^{¥prime}),-v’,==(u¥infty-u^{-¥nu^{¥prime}}u-s^{¥prime})^{-y^{¥prime}}=¥sum_{p=0}^{n}¥frac{¥sum_{=0}^{¥infty}1(¥nu^{¥prime})¥frac{(¥sum_{m=0}^{¥infty}¥nu^{¥prime})}{)_{p}n¥dagger}}{¥beta ¥mathrm{I}},¥frac{(¥nu)}{nm(¥frac{!s^{¥prime}m}{u}},,(,¥frac{s}{u-1})^{m}(us)^{p})^{n}u-1-s)^{-¥mu}$

,

which series converge uniformly on the contour, after it has been suitably defor-
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med, if $s$ , $s^{¥prime}$ , and $s^{¥prime¥prime}$ are each of modulus less than unity. Term-by-term inte-
gration is thus allowable and the integral in (2. 3) takes the form

(2. 5) $¥sum_{u¥iota,n,p=0}^{¥infty}¥frac{(¥nu)_{m}(¥nu^{¥prime})_{n}(¥nu^{¥prime¥prime})_{p}}{m¥dagger n^{1}p1}s^{mnp}s^{¥prime}s^{¥prime¥prime}(-1)^{n+p+¥lambda+v^{l}}$

$¥times¥int_{[0;1]}(-u)^{¥lambda-¥nu^{¥prime}-n+p}(u-1)^{-¥mu-¥mu-m}$du

The integral of (2. 5) may be evaluated by means of the formula [5]

(2. 6) $¥int_{[0;1]}(-u)^{¥alpha-1}(u-1)^{¥beta-1}du=¥frac{(2¥pi i)^{2}}{¥Gamma(1-¥alpha)¥Gamma(1-¥beta)¥Gamma(¥alpha+¥beta)}$

and so may be written

$¥frac{(2¥pi i)^{2}}{¥Gamma(¥lambda+¥nu^{¥prime})¥Gamma(¥mu+¥nu)¥Gamma(2-¥lambda-¥mu-¥nu-¥nu^{¥prime})}.¥frac{(¥lambda+¥mu+¥nu+¥nu^{f}-1)_{m+n-p}}{(¥lambda+¥nu^{¥prime})_{n-p}(¥mu+¥nu)_{m}}$

Hence, the typical solution under consideration becomes (apart from a constant
factor)

(2. 7) $R(x, y, z)D_{(3)}^{1,3}(¥lambda+¥mu+¥nu+¥nu^{¥prime}-1, ¥nu^{¥prime¥prime}, ¥nu^{¥prime}, ¥nu;¥lambda+¥nu^{¥prime}, ¥mu+¥nu;s^{¥prime¥prime}, s^{¥prime}, -s)$,

where
$D_{(3)}^{1,3}(a, b_{1}, b_{2}, b_{3}; c, c^{¥prime} ; x, y, z)$

$=¥sum_{m,n,p=0}^{¥infty}¥frac{(a)_{n+p-m}(b_{1})_{m}(b_{2})_{n}(b_{3})_{p}}{(c)_{p-m}(c)_{n}},¥frac{x^{m}y^{n}z^{p}}{m^{1}n^{1}p1}$

It seems worthwhile observing that this type of function was encountered by the

author while studying the analytical continuation of $F^{(3)}D$ near the point (0, 1,
$¥infty)$ , which ultimately leads to the work of this paper.

3. The case n=4.
All the relevent solutions in this case may be written as

(3. 1) $¥int_{c}u^{¥rho_{1}+¥beta_{2}+¥beta_{3}-r(u-1)^{¥gamma-¥alpha-1}(u-x)(u-y)(u-z)-¥rho_{3(u-t)du}}-¥beta_{1}-¥beta_{2}-¥beta_{4}$

where $C$ is the same type of contour as in the last section, and it may take the
following four forms:
(i) $[a;b]$

(ii) $[a;b, c]$

(iii) $[a;b, c, d]$

(iv) $[a, b;c, d]$

where $a$ , $b$ , $c$ , $d$, $e,f$, $g$ represent any permutation of the seven singularities of the
integrand
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0, 1, $¥infty$ , $x$ , $y$ , $z$ , $t$ (cf. [7] section 4).

(i) yields $¥left(¥begin{array}{l}7¥¥2¥end{array}¥right)=21$ solutions of type $F^{(4)}D$ .

(ii) $¥mathrm{y}¥mathrm{i}¥mathrm{e}¥mathrm{l}¥mathrm{d}¥mathrm{s};7¥left(¥begin{array}{l}6¥¥2¥end{array}¥right)=105$ solutions of type $D_{4}[7]$ ,

(iii) yields $7/2¥left(¥begin{array}{l}6¥¥3¥end{array}¥right)=70$ solutions of type $D_{5}[7]$ .

Case (iv) gives rise to $1/2¥left(¥begin{array}{l}7¥¥2¥end{array}¥right)¥left(¥begin{array}{l}5¥¥2¥end{array}¥right)=105$ solutions of a new type; a typical

example is

(3. 2). $¥int_{[0.x;1,y]}u^{¥beta_{1}+¥beta_{2}+¥beta_{3}+¥beta_{4}-r(u-1)^{¥gamma-¥alpha-1}(u-x)(u-y)}-¥beta_{1}-¥rho_{2}(u-z)-¥beta_{3}(u-t)^{-¥beta_{4}}du$

which is reducible, without loss of generality, to the form (cf. (2. 3)).

(3. 3) $R(x, y, z, t)¥int_{[0,s^{¥prime};1,s]}u^{-¥lambda}(u-1)^{-¥mu}(u-l-s)^{-¥nu}(u-s^{¥prime})^{-¥nu^{¥prime}}$

$¥times$ $(1-us^{¥prime¥prime})^{-¥nu^{ll}}(1-us^{r;;})-¥nu^{¥prime¥prime¥prime}du$

and as in the previous section, if the moduli of $s$ , $s^{¥prime}$ , $s^{¥prime¥prime}$ , and $s^{¥prime¥prime¥prime}$ are each less
than unity, the integral of (3. 3) may be written

(3. 4) $¥sum_{l,m,n,p}^{¥infty}¥frac{(¥nu)_{l}(¥nu^{¥prime})_{m}(¥nu^{¥prime¥prime})_{n}(¥nu^{¥prime¥prime¥prime})_{p}}{f^{1}m¥dagger n¥dagger p¥dagger}s^{lmnp}s^{¥prime}s^{¥prime¥prime}s^{¥prime¥prime¥prime}(-1)^{m+n+p+¥lambda+¥nu^{¥prime}}$

$¥times¥int_{[0;1]}(-u)-¥lambda-¥nu^{l}-m+n+p(u-1)^{-¥mu-¥nu-f}du$

By the application of (2. 6), the corresponding solution is seen to be (apart from
a constant factor)

(3. 5) $R(x, y, z, t)D_{(4)}^{2,3}(¥lambda+¥mu+¥nu+¥nu^{¥prime}, -1, ¥nu, ¥nu^{¥prime}¥nu^{¥prime¥prime}, ¥nu^{¥prime¥prime¥prime} ; ¥lambda+¥nu^{¥prime}, ¥mu+¥nu;s^{¥prime¥prime¥prime}, s^{¥prime¥prime}, s^{¥prime}, -s)$,

where

(3. 6) $D^{23}(¥dot{4})(a, b_{1}, b_{2}, b_{3}, b_{4} ; c, c^{¥prime} ; x, y, z, t)$

$=¥sum_{l,m.n,p=0}^{¥infty}¥frac{(a)_{n+p_{-l-m}}(b_{1})_{l}(b_{2})_{m}(b_{3})_{n}(b_{4})_{p}}{(c)_{n-l-m}(c^{¥prime})_{p}}¥frac{x^{l}y^{m}z^{n}t^{p}}{f¥dagger m^{1}n^{1}p!}$

Each of the solutions given in sections 2 and 3 has several different expan-

sions which are not considered worthwhile of explicit mention here.

4. The case for general n.
The solution may be expressed as

(4. 1) $ J=¥int_{C}u^{¥beta_{1}++¥beta_{n}-r(u-1)^{¥gamma-¥alpha-1}(u-x_{1})^{¥beta_{1}}(u-x_{n})-¥beta_{n}}¥cdots-¥ldots$ du.
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Let the variables $x_{1}$ , $¥cdots$ , $x_{n}$ be partitioned into.three sets

(a) $x_{1}$ , $¥cdots$ , $x_{p}$

(b) $x_{p+1}$ , $¥cdots$ , $x_{q}$

(c) $x_{q+1}$ , $¥cdots$ , $x_{n}$ ,

at each of which, together with the points 0, 1, $¥infty$ we have a singularity of the
integrand, so that, without loss of generality, the contour of integration may be
taken to be a Pochhammer double-loop in which the origin and the singularities
(b) are inside one loop, and the point 1 and the singularities (c) are inside the
other loop, with the point at infinity and the singularities (a) are outside the
contour.

If we employ the second and third expansions of (2. 4) for the factors of
the integrand associated respectively with (b) and (a), together with

(4. 2) $(u-x_{j})-¥beta j=(u-1)-¥beta j¥sum_{m_{j}=0}^{¥infty}¥frac{(¥beta_{j})m_{j}}{m_{j^{1}}}(¥frac{x_{j}-1}{u-1})^{m_{j}}$

for the factors associated with (c), then proceeding as in sections 2 and 3, if

$|x_{p+1}|$ , $¥cdots$ , $|x_{q}|$ , $|x_{q+1}-1|$ , $¥cdots$ , $|x_{n}|$ , $|¥frac{1}{x_{1}}|$ , $¥cdots$ , $|¥frac{1}{x_{p}}|$

are all less than unity, we may integrate term-by-term, so that $J$ is proportional
to

(4. 3) $ X_{1}^{-¥beta_{1}}¥cdots X¥overline{p}^{¥beta_{p}}¥cdots¥sum_{m_{1},,m_{n}=0}^{¥infty}¥frac{(¥beta_{1})_{m_{1}}(¥beta)_{m_{n}}}{m_{1}¥dagger m_{n}¥dagger}¥cdots¥cdots$

$¥times(¥frac{1}{x_{1}})^{m_{1}}¥cdots(¥frac{1}{x_{p}})^{m_{p}}(x_{p+1}-1)^{m_{p+1}}¥cdots(x_{q}-1)^{m_{q}}$

$¥times x_{q+1}^{m_{q+1}}¥cdots x_{n}^{m_{n}}(-1)^{m_{1}}+¥cdots+m_{¥varphi}+m_{q+1}+¥cdots+m_{n}$

$¥times¥int_{[0_{i}1]}(-u)^{¥beta_{1}++¥beta_{q}-¥gamma+m_{1}++m_{p}-m_{q+1}--m_{n}}¥cdots¥cdots¥cdots$

$¥times(u-1)^{¥gamma-¥alpha-¥beta_{p+1}--¥beta_{q}-m--m-1}¥cdots p+1¥cdots qdu$,

and if the inner integral of (4. 3) is evaluated using (2. 6), the solqtion under
consideration is proportional to

(4. 4) $x_{1}^{-¥beta_{1}}¥cdots x_{¥overline{p}^{¥beta_{p}}}D_{(n)}^{p,q}(¥alpha-¥beta_{1}-¥cdots-¥beta_{p},$ $¥beta_{1}$ , $¥cdots$ , $¥beta_{n}$ ;

$T-¥beta_{1}-¥cdots-¥beta_{q}$ , $¥alpha+¥beta_{p+1}+¥cdots+¥beta_{q}-¥mathcal{T}+1$,

$¥frac{1}{x_{1}}$ , $¥cdots,$ $¥frac{1}{x_{p}}$ , $1-x_{p+1}$ , $¥cdots$ , $1-x_{q}$ , $x_{q+1}$ , $¥cdots$ , $x_{n})$

where

(4. 5) $ D_{(n)(a}^{p,a} ¥cdots,¥cdots$ ,
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$=¥ldots¥sum_{m_{1}¥cdot,m_{n}=0}^{¥infty}¥cdots¥frac{(a)_{m_{p+1}++m_{n}-m_{1}--m_{p}}(b_{1})_{m_{n}}}{(c)_{m_{q+1}++m_{n}-m_{1}--m_{p}}(c^{¥prime})_{m_{p+1}++m_{q}}}¥cdots¥cdots¥cdots¥cdots¥frac{x_{1}^{m_{1}}x_{n}^{m_{n}}}{m_{1}^{1}m_{n}¥dagger}¥cdots¥cdots$

All the solutions of the partial differential system associated with Lauricella’ $¥mathrm{s}$

function $F^{(n)}D$ may thus be expressed in terms of the function $D^{p,q}(n)$ , but the total
number of distinct soultions obtainable for general $n$ does not appear to be
capable of being expressed by means of a simple formpula. The analytical

continuation of $F^{(n)}D$ near any of its singular points may, in general, be
expressed in terms of $D^{p,q}(n)$ , apart from certain exceptional regio-ns, but the for-
mulae involved become rapidly more complicated as $n$ increases.

It seems appropriate to note that if $F=q=0$ , and $q=p$, then $D^{p,q}(n)$ reduces
respectively to $p^{(n)}D$ and the function $c_{n}^{(p)}$ first defined in [7].
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