PageHeader : Funkcialaj Ekvacioj, 16 (1973), 103-136 Title : A General Solution of a System of Nonlinear Title : Differential Equations at an IrreguIar Title : Type Singu1arity* AuthorInfo : (Dedicated to Professor Hugh L. Turrittin on his retirement) AuthorInfo : By Po-Fang HSIEH AuthorInfo : (Western Michigan University) section : I. INTRODUCTION subsection : 1. Briot-Bouquet type singularity. subsection : 2. Irregular type singularity. subsection : 3. Notations and definitions. subsection : 4. Statement of problems. subsection : 5. Preliminary reductions. subsection : 6. Main assumptions and reductions. subsection : 7. A general solution. section : II. EXISTENCE THEOREMS subsection : 8. First existence theorem. subsection : 9. Second existence theorem. section : III. PROOF OF THEOREM 1 subsection : 10. A particular solution and its reduction. subsection : 11. A block-diagonalization theorem and proof of Theorem 1. subsection : 12. Proof of Theorem 1. 2. section : IV. PROOF OF THEOREM 2. subsection : 13. Differential equations for $R_{j}$ and $S$ . subsection : 14. Solutions $R_{j}(x, V(x))$ . subsection : 15. The solution $S(x, V(x))$ . section : V. PROOF OF THEOREM 3?FORMAL TRANSFORMATION subsection : 16. The equations for $A_{p}$ and $B_{p}$ . subsection : 17. The functions $A_{p}$ and $B_{p}$ . section : VI. PROOF OF THEOREM 3?ANALYTIC TRANSFORMATION subsection : 18. A fundamental lemma. subsection : 19. Proof of Lemma 3. 1. subsection : 20. A theorem to prove the convergence. subsection : 21. Proof of Theorem 3. 1. section : References