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A Necessary and Sufficient Condition for the
Existence of a Liapunov Function

By P. M. SALZBERG and P. SEIBERT
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Abstract. In the context of the general theory presented in a previous paper,
stability does not necessarily guarantee the existence of a Liapunov function.
The main purpose of this paper is to give an exact criterion for the existence
of such a function.

Introduction.
In a recent paper by the second author, [2], a general theory of non-asympto-

tic stability by means of Liapunov type functions was presented. The context
was that of a set endowed with a quasiorder (generalizing the semiorbit relation)
and two collections of sets, called “quasifilters” (which generalize the notion of
neighborhood filters). It was proved that if at least one of the two intervening
quasifilters satisfies a certain condition of “admissibility” (essentially, equivalence
to a nested countable quasifilter), then stability implies the existence of a
(generalized) Liapunov function. On the other hand, an example was given
where, in spite of stability, no such function exists. The main result of the
present paper is that a Liapunov function exists for a given pair of quasifilters,
$(¥mathit{9}, ¥mathcal{E})$ , iff there exists an admissible quasifilter between 9 and $¥mathcal{E}$ and the system
is stable in a somewhat stronger sense than $(¥mathit{9}, ¥mathcal{E})$ -stability.

1. Definitions and principal results of [2].
Let $X$ denote a set, $x$ the collection of its non-empty subsets, an $¥Phi:X¥rightarrow x$

a mapping with the property that the relation $y¥in¥Phi(x)$ is a preorder, $¥mathrm{i}.¥mathrm{e}$ . a re-

flexive, transitive relation. For $¥llcorner fl¥subset ¥mathfrak{B}$ , define $¥Phi(A):=$ $¥{¥Phi(A)|A¥in d¥}$ , where
$¥Phi(A):=¥cup$ $¥{¥Phi(x)|x¥in A¥}$ .

A non-empty subset of $x$ is called a quasififter on $X$. Throughout this
paper, capital script letters denote quasifilters on $X$.

We say “
$¥mathcal{E}$ is cruder than 9”, or $¥mathcal{E}¥prec ¥mathit{9}$ , iff

$¥forall E¥in ¥mathcal{E}$, $¥exists D¥in¥Phi$ such that $D¥subset E$ .

If both $¥mathit{9}¥prec ¥mathcal{E}$ and $¥mathcal{E}¥prec E$) hold, we say $g$) and $¥mathcal{E}$ are equivalent, and denote this
relation by $>¥prec$ .

A quasifilter is called admissible iff it is equivalent to a quasifilter 9 of the
form $¥ovalbox{¥tt¥small REJECT}=¥{B_{i}|i¥in I¥}$ , where I denotes a subset of $(0, ¥infty)$ , the closure of which
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contains the origin, and the family of sets $¥{B_{i}¥}$ is increasing.
The pair $(X, ¥Phi)$ is called $(¥mathit{9}, ¥mathcal{E})$ -stabfe iff $e¥prec¥Phi(Q))$ [in other words, iff,

given any $E¥in ¥mathcal{E}$ , there exists a $D¥in ¥mathit{9}$ such that $¥Phi(D)¥subset E]$ . We say $(X, ¥Phi)$ is
$¥mathcal{E}$-stabfe iff it is $(¥mathcal{E}, ¥mathcal{E})$ -stable.

Given a function $v:X¥rightarrow[0, ¥infty]$ , the sets $S_{v}^{¥beta}(0<¥beta¥leqq¥infty)$ and $¥mathrm{S}_{v}$ are defined as
follows:

$S_{v}^{¥beta}=¥{X¥in x|v(x)<¥beta¥}$ ;

$¥mathrm{S}_{v}=¥{S_{v}^{¥beta}|S_{v}^{¥beta}¥neq¥phi¥}$ .

$¥mathrm{S}_{v}$ is a quasifilter unless $v$ is identically $¥infty$ . The function $v$ is called a Liapunov

function for $(X, ¥Phi, ¥mathit{9}, ¥mathcal{E})$ iff the following conditions are satisfied:

(1) $¥mathcal{E}¥prec ¥mathrm{S}_{v}$ ;

(2) $¥mathrm{S}_{v}¥prec¥Phi$ ;

(3) $¥Phi(S_{v}^{¥beta})¥subset S_{v}^{¥beta}$ $(¥beta>0)$ .

We summarize the three main theorems of [2]:

Theorem A. If there exists a Liapunov function for $(X, ¥Phi, Q)$ , $¥mathcal{E})$ , then
$(X, ¥Phi)$ is $(¥mathit{9}, ¥mathcal{E})-$stabfe.

This is theorem 1 of [2].

Theorem B. If $(X, ¥Phi)$ is $(¥mathit{9}, ¥mathcal{E})-$stabfe and either $Q$) or $¥mathcal{E}$ is admissible,
then there exists a Liapunov function for $(X, ¥Phi, ¥mathit{9}, ¥mathcal{E})$ .

This is the combination of theorems 2 and 3 of [2]; note that in the present
paper the reflexivity and transitivity of $¥Phi$ is a standing assumption.

2. Necessary and sufficient conditions for the existence of a Liapunov
function.

We start with the following elementary lemma:
Lemma. If $¥mathcal{E}^{¥prime}¥prec ¥mathcal{E}$ and $Q$) $¥prec ¥mathit{9}^{¥prime}$ , then $(¥mathit{9}, ¥mathcal{E})$ -stability implies $(¥mathit{9}^{¥prime}, ¥mathcal{E}^{¥prime})-$

stability.
We leave the proof to the reader.
We can now formulate the principal result of this paper, which strengthens

theorem $¥mathrm{E}$ and settles the question of existence of Liapunov functions.
Theorem C. The following condition is necessary and sufficient for the

existence of a Liapunov function for $(X, ¥Phi, ¥mathit{9}, ¥mathcal{E})$ :
There exists an admissible quasififter $R$ satisfying the condition

(I) $¥mathcal{E}¥prec¥Re¥prec ¥mathit{9}$

and at least one of the foffowing:

(Ha) $(X, ¥Phi)$ is $(¥mathit{9}, ¥Re)-$stabfe;
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(lib) $(X, ¥Phi)$ is $(R, ¥mathcal{E})$-stable;
$(¥mathrm{I}¥mathrm{I} ¥mathrm{c})$ $(X, ¥Phi)$ is $¥Re$-stable.

Moreover, if the function in question exists, one can always find a quasifilter
$¥Re$ satisfying (I) and (lie).

Note. As a consequence of the lemma, $¥mathrm{R}$-stability implies both $(¥mathit{9}, ¥Re)$-and
$(¥Re, )$-stability, and each of these implies $(¥mathit{9}, )$ -stability,

Proof of the theorem, a) Necessity: Suppose $v$ is a Liapunov function
for $(X, ¥Phi, ¥mathit{9}, ¥mathcal{E})$ , and put $¥Re=¥mathrm{S}_{v}$ . Then (I) is an immediate consequence of
(1) and (2). Moreover, (3) yields $¥mathrm{S}_{v}¥prec¥Phi(¥mathrm{S}_{v})$ , hence (lie), which implies
the other two conditions.

b) Sufficiency: Suppose $¥Re$ is admissible and satisfies (I). If $(X, ¥Phi)$ is
$(¥Phi, ¥mathfrak{R})$ -stable, then, according to theorem $B$ , there exists a Liapunov function
$v$ for $(X, ¥Phi, Q)$ , $¥Re)$ , thus satisfying the conditions

$¥Re¥prec ¥mathrm{S}_{v}¥prec ¥mathit{9}$ and $¥Phi(S_{v}^{¥beta})¥subset S_{¥nu}^{¥beta}$
$(¥beta>0)$ .

These together with (I) imply (1?3), and it follows that $v$ is a Liapunov
function for $(X, ¥Phi, Q)$ , $¥mathcal{E})$ .

If $(X, ¥Phi)$ is $(¥Re, ¥mathcal{E})$ -stable, theorem $¥mathrm{B}$ guarantees the existence of a Liapunov
function $v$ for $(X, ¥Phi, ¥Re, ¥mathcal{E})$ , thus satisfying the conditions

$¥mathcal{E}¥prec ¥mathrm{S}_{v}-<¥Re$ and $¥Phi(S_{v}^{¥beta})¥subset S_{v}^{¥beta}$ $(¥beta>0)$ ,

which together with (I) again imply (1?3).
Since $¥Re$-stability is a special case of the preceding ones, we need not treat

it separately. The proof is complete.

3. Example.
Examples in which at least one of the intervening quasifilters is admissible,

were given in [2], §7. We will therefore limit ourselves to exhibiting a case
in which neither of the quasifilters is admissible, but a Liapunov function exists
nevertheless.

Consider a dynamical system on a metric space $X$, denoting orbits, semi-
orbits and limit sets by $r,$ $¥uparrow^{¥prime}¥pm$ , $ L¥pm$ , respectively. If $Y$ is a closed, non-empty,

proper subset of $X$, we denote $¥Re_{Y}$ the neighborhood filter of $Y$ and introduce
the quasifilter

$¥mathfrak{R}_{Y}^{*}:=¥{X¥backslash ¥{x¥}|x¥in X¥backslash Y¥}$

which is a subquasifilter of $X_{Y}$ .

We call $Y$ topologically prestable iff it is $(¥Re_{Y}, ¥Re_{Y}^{*})-$stable. Explicitly, this
means that given any point $x$ not in $Y$, there exists a neighborhood $U$ of $Y$

such that $¥mathcal{T}^{+}(U)$ does not contain $x$ . Except for special cases, neither $¥Re_{Y}$ nor
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$¥Re^{*}Y$ is admissible. In the case of compact $Y$, the concept reduces to the notion
of prestability (or “Zubov’s condition” defined in [2], §7, $¥mathrm{I}¥mathrm{I}$ ). As we mentioned
there, the conditions

(p. 1) $v>0$ on $X¥backslash Y$

and

(p. 2) $v=0$ and continuous on $Y$

imply (topological) prestability of Y. This is true independently of whether $Y$

is compact.

Now suppose $Y$, apart from being closed, invariant and topologically pres-

table, contains a compact global attractor relative to $Y$, $¥mathrm{i}.¥mathrm{e}$ . a compact set $M$

with the property that all positive semiorbits in $Y$ tend to $M$ ; moreover,
suppose $M$ contains no positive limit points of orbits outside of Y. [The
example given below clearly satisfies these conditions if $M$ is the origin.]

The quasifilter

$¥Re=¥{R_{¥beta}|¥beta>0¥}$ ,

where

$R_{¥beta}=¥{x¥in X|d(¥gamma(x), M)<¥beta¥}$ ,

is obviously admissible and satisfies the conditions (I) and (lie) [with $pc=X_{Y}$ ,
$¥mathcal{E}=¥Re_{Y}^{*}]$ , thus guaranteeing a Liapunov function in view of theorem $¥mathrm{C}$ , and
indeed

$ v(x):=¥inf$ $¥{¥beta|x¥in R_{¥beta}¥}=d(¥gamma(x), M)$

is such a function. It is easy to see that it satisfies conditions (p. 1) and (p. 2).
As a specific example, satisfying all the hypothesis in question, consider the

system of differential equations

4. Remark concerning the proof of theorem B.
In [2], the theorems 2 and 3 (now combined into theorem B) were proved
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separately. We wish to point out that each of them can be obtained easily
from the other. We start with the following

Proposition. In 9 is admissible, so is $¥Phi(¥mathit{9})$ .
Indeed, if 9 is equivalent to 9 and satisfies the same conditions as in the

definition of admissibility, then these are also satisfied by $¥Phi(¥ovalbox{¥tt¥small REJECT})$ which is equi-
valent to $¥Phi(¥mathit{9})$ .

Now suppose $(X, ¥Phi)$ is $(¥Phi, ¥mathcal{E})$-stable and 9 is admissible. Then so is
$¥Phi(¥mathit{9})$ , and $(¥mathit{9}, ¥Phi(9))$-stability always holds. Now the existence of a Liapunov
function $v$ for $(X, ¥Phi, ¥Phi, ¥Phi(¥mathit{9}))$ follows from theorem 2. This function satisfies
the conditions

$¥Phi(¥mathit{9})¥prec ¥mathrm{S}_{v}¥prec ¥mathit{9}$ .

On the other hand, $(¥Phi, ¥mathcal{E})$ -stability implies $¥mathcal{E}¥prec¥Phi(¥mathit{9})$ , hence
$¥mathcal{E}¥prec ¥mathrm{S}_{v}¥prec¥Phi$,

which means $v$ is also a Liapunov function for $(X, ¥Phi, ¥mathit{9}, ¥mathcal{E})$ . Thus theorem 3
follows.

This argument, together with the proof of theorem 2 given in [2], yields
a shorter proof of theorem 3, hence of theorem B.
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