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Existence Theorems of Quasiperiodic Solutions
to Nonlinear Differential Systems

Minoru Urase

(Kyushu University*)

Abstract. In his previous paper [2], the author showed that pseudo-
periodic differential operators and quasiperiodic differential operators have Green
functions under some conditions. On the basis of these results, in the present
paper, the author establishes a series of existence theorems of pseudoperiodic
solutions to nonlinear pseudoperiodic differential systems and those of quasi-
periodic solutions to nonlinear quasiperiodic differential systems.

1. Introduction. .

In his pervious paper [2], the author considered a matrix-valued function
f(t, ) =f(t, uy, up, ++, 4,,) of real variables # and u=(uy, %y +**, 4m) such that it
is periodic in wy, %g, -+, %, with periods @y, -+, ®,, and in addition it satisfies the
equality

a.n SF(t+00, ) = (2, ut o) = (¢, w1+ 0o, g+ W0, -+, U+ o).
He called such a function f(z,u) a pseudoperiodic function of t and u with

periods wy and 0= (W, Wy, **+, Op,).
Throughout the paper it will be assumed that

(1.2) wi>0 (1=01 1, 2: '")m)'

Let A(t,u) be a continuous square matrix dependent on ¢ and « and pseudo-
periodic in ¢ and » with periods ®, and ®, and let L be a pseudoperiodic
differential operator defined by

. _ ._i?_/.
a.3 Ly= It —AQG, wy.

In [2] the author called the operator L to be regular if there is a continuous
square matrix P(u)=P(u, us, -+, u») periodic in wuy, ug, -+, #, with periods oy,
Wg, -+, O, satisfying the conditions as follows :

@5 Py =P,
e {uwct,chu)ngKoe-rf for £20,
1-5) 106Gz, ) E—PG)|<Kee™* for 20,

* The paper was prepared when the author was at Kyoto University.
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1.6) P(u+00) 0 (0o, ) =P(wq, u) P(u),
where E is the unit matrix, O(t,u) is the fundamental matrix of the differential
system '

a.7n Ly=0
satisfying the initial condition
1.8 00, x)=E,
K, and 7 are positive numbers, and ||-|| denotes any norm.

In [2] it was shown that if the pseudoperiodic differential operator L is
regular, then

1° L has a Green function G(t,s,u) with the property
1.9 G, s, || < KeTt=s' (K, v>0) for all t,s and u,

2°  for any continuous vector-valued function f(t,u) of real variables t and
u bounded for all t the differential system

1.10) Lx=f(t,u)

has a unique solution x=ux(t,u) bounded for all t and it is given by
.11 (8, u) = f " GG, 5, ) fCs, wds,

3° for any continuous vector-valued pseudoperiodic function f(t,u) with
periods w, and o the differential system (1.10) has a unique pseudoperiodic
solution x=x(t,u) with periods w, and ®, and it is given by (1.11).

In [2] the author called a matrix-valued function f(t) of a real variable ¢
a quasiperiodic function with periods ®, @y, -+, Oy if

a.12 fO=F0

for some continuous matrix-valued function f (t,u) pseudoperiodic in ¢ and =
with periods w, and w=(0,, ws, -+, ®,,). In what follows, a continuous pseudo-
periodic function f(2, %) corresponding to a given quasiperiodic function f(z)
in the above way will be called briefly a continuous pseudoperiodic function
corresponding to a given quasiperiodic function f(t). As was shown in [2],
the condition (1.12) is equivalent to the condition that

(1.13) FO=FOC, 1,2, 5)

for some continuous matrix-valued function fF@(t, u)=F O, uy, ttg, +**, %m) of
real variables 2, uy, u,, -, #,, periodic in these variables with periods w,, 0, @, -+,
Wy '

Let A(2) be a square matrix quasiperiodic in ¢ with periods @, @y, -, ©p
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and A(Z,#) be a continuous pseudoperiodic matrix corresponding to A(Z). In
[2] the quasiperiodic differential operator L defined by

_4y
(1.14) Ly=—"—A®®y

was called to be regular if and only if the corresponding pseudoperiodic
differential operator L defined by

(1.15) I?y:ﬂ—z(t, W)Yy
- dt
is regular.
Concerning quasiperiodic differential operators, in [2] it was shown from
the results concerning pseudoperiodic differential operators that if the quasi-
periodic differential operator L defined by (1.14) is regular, then

1° L has a Green function G(t,s)=G(t,s,0) with the property
(1.16) GG, | Ke TS (K,T>0) for all t and s,

where G(t,s,u) is a Green function of the pseudoperiodic differential operator
corresponding to L,

2°  for any quasiperiodic vector-valued function f(t) with periods 0, 01, -+, Oy,
the differential system

1.17) : Lx=£(t)

has a unique quasiperiodic solution x=x(t) with periods @y, Wi, -+, Wy, and it is
given by

(1.18) 2 ()= f ~°° G(t, )f(s)ds.

In the present paper, first, from the results of [2] mentioned above two
existence theorems of pseudoperiodic solutions to nonlinear pseudoperiodic dif-
ferential systems will be established. The first one will be concerned with the
differential system of the form

(1.19) & A TG 2

and the second one will be a theorem of the same character as Proposition 3 of
the paper [1], that is, a theorem which enables one to know the existence of
an exact pseudoperiodic solution from that of a pseudoperiodic approximate
solution and in addition enables one to know an error bound of the approximate
solution taken into account. ‘

Next, on the basis of these theorems, two corresponding existence theorems

of quasiperiodic solutions to nonlinear quasiperiodic differential systems will be
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established. In establishing these theorems it will be assumed that reciprocals
of the periods wy, @y, -+, O, of quasiperiodic functions appearing in the theorems
are rationally linearly independent, that is, ‘

ri
0 W

M

(1.20) #0

z

for any rational numbers _ro 1y, T except ro=r;=--=r,=0. As will be
shown in 3, no generality is lost by this assumption. Lastly from the second
theorem concerning quasiperiodic solutions will be proved a theorem concerning
perturbations of quasiperiodic differential systems. '

2. Pseudoperiodic solutions to nonlinear pseudoperiodic differential

systems. .
Theorem 1. Given a pseudoperiodic differential system of the form
dx
(2' 1) ) —;?:A(t, u)x+f(t’ U, x)»

where A(t,u) is a continuous matriz pseudoperiodic in t and u with periods ©,

and o, and f(t,u,x) is a continuous vector-valued function pseudoperiodic in t

and u with periods wy and 0 for all x&D. Here D is aregion of the x-space.
Suppose that the pseudoperiodic differential operator L defined by

_4y
@.2) Ly= it At w)y

is regular. Let its Gre.en Sfunction G(t,s,u) satisfy
2.3) IG(t, s, w)|| < Ke 718! Jor all t,s, and u,

where K and 7 are positive numbers. Assume that S(t, u, x) satisfies the condition

@.4) e, 4, )= £t w, 2| S 7l
for all t and u and any «',x"'eD, where
(2.5) M=2E

and k is a non-negative number smaller than unity.
If there is a continuous vector-valued function x,(¢t,u) pseudoperiodic in ¢t
and u with periods @, and ® such that
2.6) (¢, u)eD  for all t and u,

and

@D S={alle—nwlSTy o=l for some t and u}cD,
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then the given system (2.1) has a unique solution x==2%(t,u) pseudoperiodic in t
and u with periods w, and ® such that '

2.8 2, uw)eD  for all t and u,

and moreover for %(¢,u) it holds that

@9 182 )= 20Ct, WIS T2 lles— ol
In (2.7), however,
2.10) 216,10 = [ G50 fTs, v, 20, 1)1

and ||fll. denotes sup||f(¢,w)|| for any vector-valued function bounded for all
t,u

t and u.
Proof. Consider the iterative process

QID  ay(tw)= f:c(t, 5y W) fIs, u, (s, w)1ds  (n=0,1,2, ).

By the induction we shall prove that this iterative process can be continued
indefinitely and that '

(2.12) N%ns1— Ll Zk|2y—20l|,, (2=0,1,2,--),
(2.13) Tt )ES for all £ and « (»=0,1,2,---).

For n=0, (2.12) and (2.13) is evident. Assume that (2.12) and (2.13)
are valid up to n—1. Then from (2.11) we have

xn+1(t: u) —xncts u) :f_ooooG(ty S, u) {ftsx U, xn(s’ u)]_f[s’ u, xn—l(sy u)]} dS,

therefore by (2.3), (2.4) and (2.5) we have

¢ =5
”xn+1(t, u)—xn(t, u)“é[ Ke_r(t—s)d5+ﬁ Ke-r(s_t)ds]X]% ”xn_xn-lnn

- e M n n—-1illn

from which follows ,
(2.14) , 1% a1 = Tl n S £ — o1}
Then by the assumption of the induction we have (2.12) for n. Then since
%1 =2l SNTns1=Lalln+ 10— Byl |22 = 24 s

it follows from (2.12) that
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(2:15) (1% 41— 2] ln S CR™+ £7 7 oo+ |26 — 2]

K
é 1—k Hxl'—xOHm

which proves (2.13) for x.
By (2.13) it is clear that the iterative process (2.11) can be continued
indefinitely. Hence we have an infinite sequence {x,(t,%)}, which by (2.12)

is uniformly convergent for all £ and . Hence we have a continuous vector—
valued function £(¢,») such that

(2.16) £(¢, w) = lim x,,(2, ).

n—>co

Now since %,(z,#) is pseudoperiodic in ¢ and u with periods ©, and ®, as
is seen from the results of [2] stated in 1, #;(¢,%) given by (2.10) is also
pseudoperiodic in ¢z and # with periods @, and © and x= xl(t u) is a solution to
the differential system

szf[t, U, xO(t: u)]-

Continuing the same reasoning, we then see that x,(¢,u) obtained by the
iterative process (2.11) are all pseudoperiodic in ¢ and « with periods a)o/and o.
Then by (2.16), we easily see that 2(z, u) is also pseudoperiodic in ¢ and «
with periods @, and .

Now let n—co-in (2.15). Then by (2.16) we have

.17 18—l < ||x1 Lollns

which clearly implies

2, u)eScD for all ¢ and .

Then, since
lect = [~ 6,5, 15,1, 805, 01ds

<2, w) — i1 (2, w)|
,+”/—°° G(t,s,w) {fLs, u, £x(s, u)1— fLs, u, £(s, w)} ds||,

similarly to (2.14) we have

I 2, u)-—‘/‘oo G, s,u) fLs,u, £(s,u)]ds
g”:’i(t; u) _xn+1(t» u)“'*"‘:”xn—':%“n

Then letting n—o0, from (2.16) we have
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”m, w)— /_ZG(t, 5, £Ts, uy 8Cs, w)1ds|| =0,

that is,

(2.18) (¢, ) = /_°° Gt s, 1) FLs, u, £Cs, u)1ds.

This implies that x=2(z, ) satisfies the differential system

Lx= f[t,u, ﬁ(t: )],

that is, x=%#(z,«) satisfies the given differential system @.D.
Now, since

12— %oll w112 — 21110+ |21 — Zol |,
by (2.17) we have

1
le—xo”néﬁ {[1—oll s

which proves (2.9).

It now remains to prove the uniqueness of pseudoperiodic solutions to (2.1)

in D. Let x=2%(¢,4) be an arbitrary solution to (2.1) pseudoperiodic in ¢ and
u with periods @y, and © such that

&', uw)eD for all ¢ and «.
Then x=%'(%,u) satisfies the differential system
La=fTt,u,& (¢, «)].
Therefore by the results of [2] stated in 1, we have

2.19) 2'(t,u) =/_°° G(,s, u)f[s, u, :2"(3, u)]ds.

Then subtracting (2.18) from (2.19) side by side, similarly to (2.14) we have
12" — 2l <&l|2"—&],,,
which implies
2.20) I[#—%||.=0
since 0<k<1. Equality (2.20) implies
@, u)=2C,uw),
which proves the uniqueness of pseudoperiodic solutions to (2.1) in D.

Q.E.D.
In Theorem 1, suppose that the region D is the whole x-space. Then the
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condition concerned with x(¢,%) is fulfilled automatically. Hence we have

Corollary. In (2.1), suppose that A(t,u) is a continuous matrizx pseudo-
periodic in t and u with periods w, and @, and f(t,u,%) is a continuous vector—
valued function pseudoperiodic in t and u with periods w, and w for all x.

If the pseudoperiodic differential operator L defined by (2.2) is regular
and f(t,u,x) satisfies the condition (2.4) for all x' and x'', then the given
system (2.1) has a unique solution x=%(t,u) pseudoperiodic in t and u with
periods w, and w.

- The following theorem is an extension of Proposition 3 of [1].

Theorem 2. Given a nonlinear pseudoperiodic differential system

dx
2.2D g7 =X, u,x),
where X(t,u,x) is a vector-valued function pseudoperiodic in t and u with
periods w, and © and continuously differentiable with respect to x for x&D.
Here D is a region of the x-space.
Suppose that the differential system (2.21) has an approximate solution

x=x¢(t,u) pseudoperiodic in t and u with periods w, and w such that

(2.22) 2ot u)ED  for all t and u,
duxy(t, w)|dt is continuous in t and u for all t and u, and
(2.23) ﬂ"%ﬂ)——xm, u, Z(t, | <r  For all t and w.

Further suppose that there are a positive number 8, a non-negative number k<1
and a continuous matriz A(t,u) pseudoperiodic in t and u with periods w, and
 satisfying the conditions as follows :

1° the pseudoperiodic differential operator L defined by

(2.24) Ly:%—A(t, w)y
is regular,
o0
((i) Dy={x|||x—2,(t,0)||<6  for some t and u} CD,
(i) 1, u, x)— A, ”>”§-zf_4 for any (¢, u, %) satisfying
@2 ll6—0(2, ]| <8,
 Gii) lﬂf —<3.

Here U(t,u;x) is the J acobian matriz of X(t,u,x) with respect to x and
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(2.26) M=—2—TIS

where K and T are positive numbers such that the Green function G(t,s,u) of
L satisfies

@2.27 G(, s, w)|| < Ke~T1E-s! for all t,s, and u.

The given differential system (2.21) then has a solution %=%£(t,u) pseudo-
periodic in t and u with periods wy and ® such that
M,
(2.28) 18— golln < <3.

Moreover a solution x=2%(¢,u) to (2.21) pseudoperiodic in t and u with periods
Wy and © satisfying the inequality

(2.29 8, w) —xo(2, w||<8  for all t and u
is unique.
Proof. Write the given system (2.21) in the form
(2.30) %:A(t, wx+ (¢, u, x),
where
(2.31) G ou, ) =X, u, x)— A, u)x.
Put
@.32) L) XLty oty 017G ),

then clearly %(z,«) is continuous and is pseudoperiodic in ¢ and « with periods
0, and 0, and by (2.23) it satisfies the inequality

(2.33) 12C, w7 for all £ and u.
Equality (2.32) can be rewritten in terms of f(z,u,x) as follows :

de(ts u)

(2.34) T =A@, w)xo(t, u)+fLt, u, 2o(2, u)14+7(2, w).

Since x((¢,u) is pseudoperiodic in ¢ and » with periods w, and w, by the results
of [2] stated in 1 we have

@) ww0= [ Gl sw) (s als I+ ) ds.

Now starting from x(¢,u) we consider the iterative process
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@30 =[Gl s 0 fTs s, s (1=0,1,2,).

Then, since

(2.37) 21t u) = f G, 5,0 £ a5, ) 1ds
‘subtriacting (2.35) from (2.37) we have_z
@.38) 24(t, ) — oty ) = — f Gty 5, w0, s,
Then by (2.26), (2.27) and (2. 33) we have

2.39 Il — 2ol < M.

For the iterative process (2.36), as for (2.11), we can prove that it can be
continued indefinitely and that

(2' 40) ”x"‘i‘l_xﬂ”néﬁ:n”xl—x()un (nzoy 17 2’ "'):
(2° 41) ”xn+1_‘x0“n<6 (n:()) 1, 2, "')-

In fact, for n=0, (2.40) is evident and (2.41) follows from (2.39) by (iii) of
(2.25). Assume that (2.40) and (2.41) are valid up to n—1. Then from
(2.36) we have

Zpi1(tyu) —2,(t,u)= f _w G, s,w) {fLs, u, x,(s, w)1— fLs, u, -1 (s, 2) 1} ds.

However by (2.31) it holds that

f[S, u, xn(s’ u)]"'f[sa u, xn—1(5, u)]
=XT[s, u, (s, u)1—X[s, u, u_1(s, W) 1—A(s, w)[2, (s, ) —2,,-1(s, )]

= [ W5, s, )05, 1) = (5, D] = A5, D)
| X [, 1) — @y (5, u) 1d0.
Thus by (i1) of (2.25) we have

g ’ K
(2~42) ‘ ”xn+1—'xn“n§M'M'“xn"xn-—lnnz—"‘:”xn'—xn—'lnm

from which follows (2.40) for n since
[ Y | W | F At N |
by the assumption. Then

”xn+1"'x0”n§”xn+1"xn”n+llxn"’xn—1”n+"'+”x1_x0”n
SRR e D — %ol

< (1264 — ol | s

11—k
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from which by (2.39) and (ii) of (2.25) follows
Mr
(2.43) “xn+1—xo”néﬂ‘<3-

Thus we see that the iterative process (2.36) can be continued indefinitely and
(2.40) and (2.41) are valid for all n. Then we have an infinite sequence
{x.(t,2)}, which by (2.40) is uniformly convergent for all £ and . Hence
we have a continuous vector-valued function £(z,«) such that

(2.44) 2(t,u)=lim x,(z, u).

#N—>C0

In the same way as the proof of Theorem 1, it is easily seen that £(z,u)
is pseudoperiodic in ¢ and % with periods w, and ®. Moreover letting n— <o
in (2.43) we have (2.28). Then in the same way as the proof of Theorem 1,
we see that x=2£(¢,4) is a solution to (2.30), that is, (2.21). Thus we see
that the given system (2.21) has a solution x=%£(z, ») pséudoperiodic in ¢ and
u with periods @, and o satisfying (2.28).

The uniqueness of péeudoperiodic solutions to (2.21) satisfying (2.29) can
be proved in the same way as the proof of Theorem 1. Q.E.D.

3. Continuous pseudoperiodic functions corresponding to quasiperiodic
functions. ‘

Let f(¢) be a matrix-valued function quasiperiodic in ¢ with periods w, @y,
<+, 0,,. Then by our definition stated in 1, there is a continuous matrix-valued

function fO(, u)=fOC, uy, tts, -+, %,,) periodic in ¢, wuy, us, ++, %,, with periods
W, W1, W, ***, Wy, such that '

@G.D SO=rO¢D=f0{,t,t,-,2.

We shall show that we may assume without loss of generality

3.2 . P 0
i=0 O;
for any rational numbers ro, vy, -, T except ro=r;=:--=r,,=0. Suppose that

(3.2) does not hold for some rational numbers rg, 7y, -+, 7, not all vanishing.
Then it is clear that

mopi
3.3 ' Eo o; =0

for some integers py, p1, ***, P not all vanishing. Without loss of generality we
may assume that ’

G ' Pm=0.
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Then from (3.3) we obtain the equality of the form

1 m—1 P:
3.5 —= ,
(.9 W  i=0 qO;

where g0, po, pl,, pm—1 are all integers. Put
(3' 6) f(O) (wot, WUy, Walkg, *+*, wmum) =f~(0) (t7 Uypy Ugy °*y u_m)r

then f©O(z, uy,uy -, uy) is a continuous matrix-valued function periodic in
t, Uy, Us, -, Uy, with period unity. From (3.5) and (3.6) we then have
= 4 u u
(3' 7) f(o)(t’ Uy Ugy 'y um)sz)(_’ — .. ——m—)

Wy’ 07 O

’ ’ ’
~ t Uy Upy—1 PO . Pl Pm-—l
:f(0)<__.’ e, U+ Ut o+ U )-
‘ Wo W Wmp-1 GWo qu, qWm—1

We now consider the function

(3' 8) f(l)(t; Upy Ugy ™"y um—-l)

U4 4 14
= . ow Un-y Po ! Pm—1
_—:f(O)(_’ —_— e, , t+ u -+ U1 |
Wg Wm—-1 g qwy W1

Then clearly f®(t,uy,us -, m-y) is a continuous matrix-valued function
periodie in Z, #y, us, +--, #m-y with periods g, gw, -+, g®»-1. Moreover by (3.1),
3.7) and (3.8) we have

B9 fO=r0%,¢t, -, t)
::f(l) (t; Ly ey t)-

This means that the number of periods of f(¢) can be reduced. Hence if
Wy, Wy, -+, ©,, are periods of the least number, then we have (3.2). This shows
that without loss of generality we may assume (3.2) for any rational numbers
TosT1y = *s T €XCEPL ro=r;=+"=r,=0.

In what follows, this will be assumed always.

Then by well known Kronecker’s theorem on Diophantine approximations,
for arbitrary ¢ and z=(u, us, --*, %,,), to any number §>0 correspond a number
7 and m+1 integers po, p1, -**, Pm such that

(3.10) lt+powo—7|, lui+pi0;—7|<d (G=1,2,---,m).
From this result we have
Lemma 1. Let f(t) be an arbitrary matrix-valued function quasiperiodic
in t with periods g, @y, +,®,. Then a continuous pseudoperiodic function
F,w)=FQ,uy,us, -+, ) corresponding to f(t) is uniquely determined and

moreover for arbitrary t and u, to any positive number & corresponds a number
7 such that
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(8.1D f (2 w)— FDlI<e.
Proof. By the definition of quasiperiodic functions, there is a continuous
matrix-valued function f(t, u)=f(, uy, us, -+, %m) pseudoperiodic in ¢ and w=

(a1, ug, -+, u) with periods @, and w=(w;, @, -+, ,,) satisfying the equality

(3.12) F@&,0=£G.
Put
(3- 13) f(t: u—t) =f(0) (t: u) =f(0) (t, Upy Ugy **°y um)y

then by the definition of pseudoperiodic functions SO, uy, ug, -+, ) is clearly
periodic in ¢, uy,us, -+, u,, with periods wy, 0, @g, -+, 0,,. Since f(¢,u) is con-
tinuous for all ¢ and », £ (2, uy, ug, -+, u,,) is also continuous for all ¢, u, us, -,
#m. Then fO, uy,uy - u,) is uniformly continuous for all #,uy,us, -+, %,

Then for any positive number ¢ there is a positive number § such that

(3' 14) ”f(o)(t,9 ui, ué) "ty u;n)__f‘(()) (t, Uiy Ugy *°y um)“<€
whenever
(3. 15) ’tl'—tl, lu:_uzi<6 (z=1! 2:"',m>-

Now from (3.13) it is clear that
(3.16) F&w=FO%,utt)=Ff O, ui+t, us+t, -, upm+2).

For arbitrary ¢ and », by Kronecker’s theorem mentioned above, there are a
number 7 and integers pq, 1, P2, -+, P such that

G.17 |e+powo—7l, [(ui+) +pi0i—7|<é (G=1,2,-,m).

Then by (3.14) we have »
Lf @ E+powo, w1 +P101, -+, i+ 24 PmOm) — f O (7,7, -+, D[ <6,
which by the periodicity of fO (2, uy, ug, -+, %) implies
| f O, w+t, us+t, -, tm+t) — FO(z, 7, -, || <e.

By (3.16) this means that

(3.18) f (2 w)—F (=, 0 <,
which by (38.12) proves (3.11). i

Now suppose that there are two continuous pseudoperiodic functions f’(¢, %)

and f''(t,u) corresponding to f(z). Then, as is seen from the proof of (3.18),
for any positive number ¢ there is a number 7 such that

ILF! Gy )= F@, 177G w)— f(Dl<e.

Then we have
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'@ w)—F" @ wll<2e.
Since ¢ is an arbitrary positive number, this implies
| 177G, ) =77/ )| =0,
that is,
Fra,w=75"@¢o.
Since ¢ and u are arbitrary, this means that
Fri,w)=f"(t,u) for all ¢ and u«.

This proves the uniqueness of continuous pseudoperiodic functions corresponding
to f(2). ' _ : Q.E.D.

From the proof of Lemma 1, we readily see that the following lemma is
also’ valid.

Lemma 2. Let f;(t) (:=1,2,---,n) be arbitrary matriz-valued functions
quasiperiodic in t with periods Wy, ©y, -, W, and
fi(t: u>=fi(t, Uy, Ugy ** 7y um) (z:l, 2) Tty 71)

be continuous pseudoperiodic functions corresponding to fi(t) respectively. Then
for arbitrary t and u, to any positive number e corresponds a number T such
that

Hf-:i(t’ u) _ﬁ(7)|l<8 : (1:‘1) 2, ) 71).

4. Quasiperiodicvsolutions to nonlinear quasiperiodic differential systems.
On the basis of Theorem 1 we have
Theorem 3. Given a quasiperiodic differential system of the form

an & A+,

where A(2) is a matriz quasiperiodic in t with periods ®o, @y, ", Oy and f(2,%)
is a continuous vector-valued function quasipe}'iodic in t with periods wy, Wy, -+, Oy
for all x&D. Here D is a closed region of the x-space. -

Suppose that the quasiperiodic differential operator L defined by

wn Ly=Z—acyw

is regular and that the Green function G(t,s,u) of the pseudoperiodic differential
operator L corresponding to L satisfies

4.3) Gty s, w)|| < Ke 712! for all t,s and u,

where K and T are positive numbers. Assume that
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.9 A D= A el e )
Sor all ¢t and any x',x'' €D, where

v ' 2K
4.5) M=—
E 7
and £ is a non-negative number smaller than unity.

If there is a vector-valued function x,(t) quasiperiodic in t with periods
Wy Wy, ***y W, Such that

(4.6) ' x(@)ED  for all t
and
“D S={x1 ool ST llzy—zll for some t}cD,

then the given system (4.1) has a unique solution x=2%£(t) quasiperiodic in t with
periods Wy, Wy, +++, 0, such that :

4.8 ‘ 2(eD ‘ Sor all ¢,

and moreover for £(t) it holds that

“.9 16 ~2o(DI| ST Iz~ el
In (4.7), however,
(4.10) ()= [ GCt,5) L5, 1o(s)1ds

where G(t,s) is the Green function of the quasiperiodic differential operator L,
that 1is, -

(4.1D ' G, 5)=G(,s,0),

and |||, denotes sup || f(t)|| for any vecotr-valued function f(£) bounded for
¢
all t.

Proof. Let f(z,u,%) be a vector-valued function continuous and pseudo-
periodic in £ and » with periods w, and w=(,, s, -+, w,,) such that

4.12) ' F(,0,2)=£(, ).
Let 2’ and x'/ be arbitrary points belonging to D. Then by Lemma 2, for

arbitrary ¢ and u, to any positive number ¢ corresponds a number 7 such that

1F ¢ty )= £, 201 <2
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Ity &) — £z, 2| <§.
Then by (4.4) we have

IF @, u, ) —F (&, u, x"_)n<e+]’:—4 N’ — "]
Since ¢ is an arbitrary positive number, letting e—0, we have
(4.13) PR ARSI Bl B

Since ¢ and » are arbitrary and x/,x’’ are arbitrary points belonging to D,
(4.13) is valid for all ¢ and # and any x’,x’€D. From (4.13) it readily
follows that f(z,u, ) is continuous in £, « and x.

Now let #,(¢,%) be the continuous pseudoperiodic vector-valued function
corresponding to %,(2). Then by Lemma 1, for arbitrary ¢ and #, to any
positive number e corresponds a number 7 such that

(4.14) 1ZoCt, w) — ()] <.

Since xy(t)ED for all ¢, &,(¢, ) then belongs to the e-neighborhood of D. Since
¢ is an arbitrary positive number, this implies '

(4.15) Fo(t, w)ED,

where D is the closure of D. Since D is closed by the assumption and ¢ and u
are arbitrary, (4.15) implies

(4.16) Z,(t, u)eD for all £ and «.
Then put
.17 Fi(tw)= [ Gt 50 Ts,w Euls,1)1ds,

then by (4.11), (4.12) and (4.10) it is clear that
4.18) 816, 0)= [ GGt 5) fTs, () Mds=w,(0).

Since (¢, ») is continuous and is pseudoperiodic in ¢ and z with periods w, and
o, it is a continuous pseudoperiodic vector-valued function corresponding to
xl(t).

Now consider x such that

- K — o
(4.19) ko=t I ST I1E:— ol

First we shall prove that
(4.20) 11 —Zoll = 11— Zol| -
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By Lemma 2, for arbitrary ¢ and u, to any positive number & corresponds a
number 7 such that '

1E4C2, 1) = (D, [1BoCt, 1) 2ol <

Then we have
1Z1C2, u) —Zo(2, w|| e+, (7) — 2o (|| e+ {21 — %ol |-
Since ¢ is an arbitrary positive number, letting ¢—0 we have
1 1C2, u) — Fo (2, w|| < |21 — 2ol .
Since ¢ and « are arbitrary, we thus have

ufl'—:eonFstuig (1512, ) ~Fo(2, w)|| 11— %ol

On the other hand, ‘
ll2,(2) — 2o (D = 1Z1(2, 00 —To(2, D [IF1— ol
for any 2. Hence clearly
[1221 = 2olls < [1Z1—Zol -
Thus we have (4.20).

Now for arbitrary ¢ and «, to any positive number ¢ corresponds a number
7 such that

1B, W) — 2z (D] <e.
Then for x satisfying (4.19) we have

o= < I —Follate

K L
=gl aollte.

This implies that « belongs to the e-neighborhood of S. Since e is an arbitrary
positive number, we then see that '

xeD=D,

that is,

4.2 {xl e —%, (2, ]| < lf-lc 1%, —Zoll, for some ¢ and u}CD.

Let A(¢,u) be a continuous pseudoperiodic matrix corresponding to A(2).
Then by (4.13) and (4.21) we see that the conditions of Theorem 1 are all
fulfilled for the pseudoperiodic differential system
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(4.22) ; %=E(t, W+ f (¢, u, 2).
Hence by Theorem 1 we see that (4.22) has a unique solution x=2(¢, ) pseudo-
periodic in ¢ and » with periods @, and @ such that

(4.23) 2@, u)eD for all £ and «
and
(4.20) 182, ) ~FoCt, W) | ST 1Es— ol
Put
(4.25) 2,0 =20,

then clearly x=2(¢) is a solution to (4.1) quasiperiodic in ¢ with periods ,,
oy, -+, 0, and by (4.24) it satisfies the inequality (4.9). '

It now remains to prove the uniqueness of quasiperiodic solutions. Let
x=8(2) be an arbitrary solution to (4.1) quasiperiodic in ¢ with periods w,, v,
-++, 0, such that '

2D for all ¢
Then clearly x=2(t) satisfies the equation

i‘%:ﬁ(z, Ox+ £ (2,0, x).

Since £(t) is bounded for all £, by the result of [2] stated in 1, we have
(4.26) B(5)= f " G, s, 00 7L, 0, () 1ds

= f ¥ G, ) £Ts, #(s)1ds.

Suppose that (4.1) has two solutions £(z) and #'(2) quasiperiodic in ¢z with
periods w,, ®;, ++, ®,, such that

2,2 (D for all &
‘Then besides (4.26) we have

4.27) &)= f G, Fs, 8()1ds.

Then subtracting (4.26) from (4.27), by (4.3), (4.4) and (4.5) we have
12" (&) -2 =kl||& —2lL,,

which implies
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12" =&l <&[|&" — 2|4
Since 0<k<1, this implies
|1&"— 21, =0,
" that is,

() =20).
This proves the uniqueness of quasiperiodic solutions to (4.1). Q.E.D.
On the basis of Theorem 2 we have

Theorem 4. Given a nonlinear quasiperiodic differential system

dx
(4.28) Z"X(t’ x),

where X(t,x) is quasiperiodic in t with periods W, @y, ++, ®, and the pseudo-
periodic function X (t,u,x) corresponding to X(t,x) is continuously differentiable
with respect to x for x=D. Here D is a closed region of the x-space.

Suppose that the differential system (4.28) has an approximate solution
x=xo(t) quasiperiodic in t with periods w,, w,, -, 0, such that the continuous
pseudoperiodic function Z,(t,u) corresponding to x,(t) is continuously differen-
tiable with respect to t for all t and u, and

(4.29) 2 (D  for all t,

© (4.30) ' l —dﬁ(g—l—X[t, %o(8)]

d

<r for all t.

Further suppose that there are a positive number 8, a non-negative number k<1
and a matrix A(t) quasiperiodic in t with periods w;, 0y, -+, @, satisfying the
conditions as follows :

1° the quasiperiodic differential operator L defined by

(4.31) Lyz%-—A(t)y

is regular,
20
(i) Dj={xlllx—z(OI<S for some t} D,

K
11 — <. . . _
(4.32) (i) e A(t)HzM for any (t,x) satisfying ||x—x,(2)]| <0,
Mr
(iii) T—r <é.
Here ¥(t,x) is the Jacobian matriz of X(t,x) with respectvto x and

(4.33) M =¥,



94 M. Urase

where K and T are positive numbers such that the Green function G(t, s, u) of
the pseudoperiodic differential operator corresponding to L satisfies

(4.34) NG, s, w)||SKe TS\ for all t,s and u.

The givén differential system (4.28) then has a solution x=2(¢) quasiperiodic
in t with periods ,, 0y, -+, W, such that

: Mr
(4.35) llﬁ—xoﬂném<3.

Moreover a solution x=2(t) to (4.28) quasiperiodic in t with periods wo, ®1, -+, Om
satisfying the inequality '

(4.36) 2@ —xo(D||<0  for all t
is unique.
Proof. As is shown in the proof of Theorem 3,
(4.37) Zo(t,u)eD for all ¢z and w.
Consider
(4.38) M—X[t, u, ToCt, u)].

dt

This is continuous and is pseudoperiodic in # and = with periods @, and 0=
(wy, s, *++, ®,). Therefore by Lemma 1, for arbitrary ¢ and #», to any positive
number e corresponds a number 7 such that ‘

B w) e, .z ]_ Axe() _

”[ I X2, u,%o(t,u)] 5 X[z, x(,(t)]lq <e.

Then by the assumption (4.30) it follows that
ﬂc—o—;%ﬁ—)_f[t,u,ﬁo(t, u)]l <re.

Since ¢ is an arbitrary positive number, letting e—0 we have

\ dzy(t, u)

dt
Since ¢ and u are arbitrary, this implies

da—f()(t} u)
dt

<r.

— X[, u, £o(2, u)]

(4.39) ‘

— X[, u, Zo(t, u)]

<r for all £ and «.

Now consider x such that
(4.40) e —%o(2, w)||<0. -

Then there is a positive number §,<8 such that
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(4.41) Il —Zo (2, w)]| <8, <0.
Let ¢ be an arbitrary positive number such that
(4.42) 0<e<0—0;.

Since %,(Z, %) is continuous and is pseudoperiodic in ¢ and « with periods @, and
o, by Lemma 1 there is a number 7 such that

[1Z0(2, 2) —zo(D)]| <e.
Then from. (4.41) and (4.42) we have
| |2 —24(2)|| <3
By (i) of (4.32), we then see that z&D,CD. This proves that
(4.43) D, = {x] ||x—%o(t, w)||<8 for some ¢ and u} CD.
Next for x satisfying (4.40), consider
T (2, u, 2)— A, W,

where ¥'(z,u,x) is the Jacobian matrix of X (¢, u, x) with respect to x and A (¢, u)
is the continuous pseudoperiodic matrix corresponding to A(z). Since ¥ (¢, u, x)
—A(t,u) is continuous and is pseudoperiodic in ¢ and u with periods wy, and @
for any x fixed, by Lemma 2 for any positive number ¢ satisfying (4.42)
there is a number 7 such that

[|Z(2, w) — 2o (DI <5, :

1P @, u, %) — A G, w)1—[¥ (7, 2)— A} <.

Then for any x satisfying (4.41) we have

Il —20(D| <.
Therefore by (ii) of (4.32) we have

17t 2) — At Wl <z7+e.
Since ¢ is an arbitrary positive number satisfying (4.42), letting e—0 we have
(4.44) PG D-A¢wisg;

This proves that (4.44) is valid for x satisfying (4.40).
By (4.37), (4.39), (4.43) and (4.44), we see that all the conditions of
Theorem 2 are fulfilled for the pseudoperiodic differential system
dx

(4.45) ' -—;i—t“= X(t,u,x).
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Hence by Theorem 2 we see that (4.45) has a solution x=%(¢,«) pseudoperiodic
in ¢t and # with periods w, and ® such that

I
(4.46) 18— Folla <

<.
Put
z(,0)=2(),

then clearly x=4£(#) is a solution to (4.28) quasiperiodic in ¢ with periods
Wy, Oy, +++, O,, and by (4.46) it satisfies the inequality (4.35).

It now remains to prove the uniqueness of quasiperiodic solution. Let
x=#(¢) be an arbitrary solution to (4.28) quasiperiodic in ¢ with periods
g, Wy, **+, O, such that ' ‘

28 —xy(B)]|<8 for all z.

Then

.40 BB _ 31, 601= AW + £T5, 6],
where

(4.48) f,x)=X¢,x)—A(t)x.

Since £(¢) is bounded for all #, similarly to (4.26) we have

(4.49) 2() = f_°° GGz, 5) £Ls, £(s)1ds.

Suppose that (4.28) has two solutions £(¢) and #£'(#) quasiperiodic in ¢ with
periods g, @i, *++, @, such that

(4.50) N2 —x,(D, &' (E)—xo(I<E for all ¢
Then besides (4.49) we have

(4.51) #/(2) = f Gt 5) fTs, () ds.
Now by (4.48)

S5, 8 (D)1= fLs, ()]
={X[s, ()1-X[s5, 8O — A2 () —2(s)]

= [ WL, 24008 )1 — A IH ()~ 1db.
Therefore on account of (4.50), by (ii) of (4.32) we have

1 s, &/ ()1 £ L5, &)1 g7 18 ) — £
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‘Then subtracting (4.49) from (4.51), by (4.33) and (4.34) we have

llﬁ'—@ﬂnékllﬁ'—@”n
Since 0<k<1, this implies

(12’ —%l.=0,
that is,
2 H=200.
This proves the uniqueness of quasiperiodic solutions to (4.28). Q.E.D.

From Theorem 4, we can get the following theorem concerned with the
perturbation of quasiperiodic differential systems. '

- Theorem 5. Given a nonlinear quasiperiodic differential system of the form

.52  ExG 0 +eFe, 0,

where X(t,x) and F(,x,¢) 'are both quasiperiodic in t with periods Wy, @y, **+, Wy,
for any x=D and any € satisfying

(4.53) - le]|<ey (go>0).
Here D is a closed bounded region of the x-space.
Suppose that the continuous pseudoperiodic functions X(t,u,x) and F(t,u, x,€)
corresponding to X(t,x) and F(t,x,¢) respectively are both continuously differ-

entiable with respect to x for all t and u, x=D and e satisfying (4.53), and
that the Jacobian matrix V' (t,x) of X(¢,x) with respect to x satisfies a Lipschitz

condition :
(4.59) 1,2 )=, 2Dl <Lila"—="|| (L>0)
for all t and any x',x''&D,

Assume that the unperturbed system of (4.52), that is, the system

dx
(4.55) 5 =X (&%)

has a solution x=1x,(t) quasiperiodic in t with periods Wg, ®y, -+, Oy, Such that the
pseudoperiodic function %y (t,u) corresponding to x,(t) is continuously differen-
tiable with respect to t for all t and u, and

. (4.56) 2o(&)ED for.all t,
(4.57) - Dy={x| le—xo(D||<8y for some t} CD for some 3,>0,

and the quasiperiodic differential operator L defined by

(4.58) Ly=2 g1, 2,0y
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is regular.

Then there is a positive number &,<¢, such that for any ¢ satisfying
(4.59) le]<eq,

the given system (4.52) has a solution x=2%£(t,&) quasiperiodic in t with periods
W, Wy, *+*, O, Such that

(4.60) 18C2, € —2o(DI|=0(le])  (e—0).

Moreover, for any ¢ satisfying (4.59), a solution x=2%£(t,e) to (4.52) quasi-
periodic in t with periods ©g Wy, -+, Wy  is determined uniquely in a certain
neighborhood of xy(t).

Proof. By the assumption there is a positive number C; such that

(4.61) |FLz, 24(2), €11 <Co
for all ¢ and e satisfying (4.53). Then we have
e 62) l—‘zg—@—— {X[t, () 1+ eFLt, x(2), €1}

= lel '”F[t’ xO(t), €]”
=Cylel.

Let F,(¢,x,¢) be the Jacobian matrix of F(, x,¢) with respect to x, then by
the assumption there is a positive number C such that

(4.63) L IF2(2, 2, || =C
for all ¢, xeD énd e satisfying (4.53). Then for any « satisfying
(4.64) Hlx—2o(2]| <I =30,
by (4.54) and (4.63) we have _
(4.65) & (2, %)+ eFa(t, , )} =Lz, 26(H]
SL|jx—xo(Dll+Cle]
<L3+Clel.
Thus we see that the condition (4.32) in Theorem 4 is fulfilled if
©4.66) ekl <e,
(4.67) L3+Clel sy

for some positive number 6§<d, and a non-negative number k<1. Here M is
the number connected with the Green function G(z,s,#) of the pseudoperiodic
differential operator corresponding to L. That is, let G(z,s,%) satisfy

IG(, s, ]| <Ke7i-s! for all ¢, s and #,
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where K and 7 are positive numbers. Then

2K
7

Now (4.66) and (4.67) can be rewritten as follows :

(4.68) MC"

© jej <053 (- Clel),

which implies

(P2 +F i<
that is, v
(4.69) lelgg(c+ Y
Let- us take & such that
(4.70) k=min (o, LM8&,)

where £, is an arbltrary positive number smaller than unity. For & given by
(4.70) put

.70 v=min | &, 1(C+ Af?) ]
Then for any ¢ satisfying
(4.72) le]<ey,
we have
MCO

el < (g—Clel ) s S0

Hence if we take § so that

(4.73) a:%(ﬁ’id—cm),

then we have (4.68) and 6<d, in other words, we have a positive number
0=0, and a positive number x£<1 satisfying (4.66) and (4.67).

By Theorem 4, we then see that for any e satisfying (4.72) the given
system (4.52) has a solution x=%£(¢,¢) quasiperiodic in ¢ with periods g, wy,
.-, 0,,, which satisfies

4.7 1605, OIS e,

This proves the first conclusion of the theorem.
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By Theorem 4, we further see that a solution x=2(%,¢) to (4.52) quasi-
periodic in ¢ with periods wg, wy, --+, ®,, satisfying the inequality

4.75) 6, )=o)l <= (5—Clel)

is determined uniquely. This proves the second conclusion of the theorem.
Q.E.D.
Remark. As is seen from the above proof, in Theorem 5, a bound e; of
e within which the existence of a quasiperiodic solution to (4.52) is guaranteed
can be given explicitly, say, as (4.71) and a neighborhood of x,(z) where the
uniqueness of such a quasiperiodic solution is guaranteed also can be given ex-
plicitly, say, as (4.75). ' ‘
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