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Introduction.
A measure $¥mu$ on a topological space $X$ is said to be invariant with respect

to a dynamicd system or flow $¥pi$ on $X$ if for every measurable set $A¥subset X$ and
for every $t¥in R$ we have

$¥mu(¥pi(A, t))=¥mu(A)$ .

Since the celebrated recurrence theorem of Poincare appeared, many im-

portant properties of a dynamical system admitting an invariant measure were
obtained and a new branch of mathematics called “Ergodic Theory” was
developed. For future reference, we recall here the following:

$(*)$ Let $¥pi$ be a dynamical system on a locally compact metric space $X$ with
a countable base, and let $¥mu$ be an invariant measure having the following
properties: $¥mu(K)$ is finite for every compact set $K¥subset X$, and $¥mu(X)=¥infty$ . Then
for almost all $x¥in X$, the motion $¥pi(x,t)$ is either Poisson stable or departing

([3]).
However, very little work has been done on the converse problem, $¥mathrm{i}.¥mathrm{e}.$ , the

problem to establish necessary and sufficient, or sufficient conditions for a given
dynamical system to admit an invariant measure. As far as we know, the
following are among the most elegant results.
(1) Every dynamical system on a compact metric space admits an invariant

measure ([3]).
(2) A dynamical system $¥pi$ on a complete separable metric space $X$ admits

a finite invariant measure if and only if there exist a compact set $K¥subset X$ and a
point $x¥in X$ such that

$¥varlimsup_{¥tau¥rightarrow¥infty}¥frac{1}{¥tau}¥int_{0}^{¥tau}¥phi_{K}(¥pi(x, t))dt>0$ ,

where $¥phi_{K}$ denotes the characteristic function of $K([5])$ .
$*$ The paper contains proofs and detailed discussions and explanations of the results

published in Proceedings of Japan-U. S. Seminar on Ordinary Differential and Func-
tional Equations, Lectures Notes in Mathematics, Vol. 243, 266-269, Springer Verlag,
Berlin Heidelberg New York, 1971.
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The measures considered in the results recalled above are not necessarily
positive on each non-empty open subset. Motivated by practical applications,
the author is interested only in invariant Lebesgue measures satisfying the
following two conditions:
(1) The measure of every non-empty open subset is positive
(2) The measure of every compact subset is finite.

In the sequel such a measure will be called an invariant positive measure.
The main purpose of this paper is to obtain necessary and sufficient condi-

tions for existence of invariant positive measures for local systems on $R^{2}$ , $S^{2}$ or
on an open subset of $R^{2}$ or $S^{2}$ . (A similar study for a dynamical system on
the torus was made by J. C. Oxtoby. He gave an example of Stepanov flows
on the torus which admit an invariant positive measure ([4]). However, it is
still unknown, as far as the author knows, whether every Stepanov flow on
the torus admits such a measure.)

Our main results are as follows (cf. $(*)$ recalled above):
(I) Let $¥pi$ be a Jocaf system on $R^{2}$ or $S^{2}$ or on an open subset of $R^{2}$ or $S^{2}$ .

(i) If $x$ is a regular point, then $¥pi$ admits an invariant positive measure
locdly at $x_{¥sim}$

(ii) Let $x$ be an isolated singular point. If $x$ is either a Poincare center

{abbreviated as a center) or a generdized saddle, then $¥pi$ admits an invariant
positive measure focafly at $x$ . (For the definition of a measure invariant locally
at a point, see §4 below. The necessity was proved in $[7]^{**})$ .

(II) (i) Let $¥pi$ be a focal system on $R^{2}$ for which there are only a finite
number of singular points. Then $¥pi$ admits an invariant positive measure if and
only if the number of non-periodic orbits which have a non-empty limit set

( $+$ or ?) is finite.
(ii) Let $¥pi$ be a dynamical system on $R^{2}$ or $S^{2}$ for which there are only $a$

finite number of singular points. Then $¥pi$ admits a finite invariant positive
measure if and only if the number of non-periodic orbits is finite.

In Section 1, we recall the notion of a local system on a topological space
and explain basic concepts and notations which will be used in later sections.
In Section 2, we recall the notion of an isomorphism between local systems,

extend the definition of an invariant measure to local systems, show that our
isomorphisms preserve invariant positive measures and discuss existence of
invariant positive measures for some special flows. In Section 3, we discuss
existence of invariant positive measures for some special flows in $R^{2}$ , which will

$*^{¥backslash }*$ In [7], the authors consider only dynamical systems defined by autonomous systems
of differential equations. However, it is easily seen that their results can be extended
to general dynamical systems on any open subset of $R^{2}$ or $S^{2}$.
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be a foundation for the later sections. In Section 4, we introduce the notion
of the local existence of an invariant positive measure and discuss the existence
for some cases. In Sections 5 and 6, we obtain necessary and sufficient condi-
tions for the global existence of invariant positive measures on $R^{2}$ and $S^{2}$ ,

respectively, as described above, and thereby achieve the main purpose of our
papar.

§1. Basic Concepts.
Throughout the paper, $R$ denotes the set of real numbers.
Definition 1. 1. (cf. [1], [8], [9]). Let $X$ be a topological space, let 9 be

an open subset in $X¥times R$ of the form

$¥mathit{9}=x¥frac{¥bigcup_{¥prime}}{¥sim}X¥{x¥}¥times I_{x}$ ,

where $I_{x}(=(a_{x}, b_{x}))$ is an open interval containing 0 and let $¥pi$ be a mapping of

9 into $X$. We say that $¥pi$ is a local dynamical system on the phase space $X$

(or, more briefly, a locd system or a local flow on $X$ ) if the following condi-
tions $(1)-(4)$ are satisfied:
(1) Identity: $¥pi(x, ¥mathrm{O})=x$ for all $x¥in X$.

(2) Continuity: $¥pi$ is continuous.
(3) Homomorphism: Lf $(x, t)¥in ¥mathit{9}$ , $(x, t+s)¥in ¥mathit{9}$ and $(¥pi(x, t), s)¥in ¥mathit{9}$ , then

$¥pi(¥pi(x, t), s)=¥pi(x, t+s)$ .

(4) Nonextendability: If $a_{x}$ (resp. $b_{x}$) is finite, then the cluster set $L^{-}(x)$ ,

$(L^{+}(x))$ of $¥pi(x, t)$ as $t¥downarrow a_{x}(t¥uparrow b_{x})$ is empty.

If in particular $I_{x}=R$ for all $x¥in X$, $¥mathrm{i}.¥mathrm{e}.$ , $¥mathit{9}=X¥times R$ , we say that $¥pi$ is a
global system.

$C^{+}(x)$ , $C^{-}(x)$ and $C(x)$ denote the positive semi-orbit, the negative semi-

orbit and the orbit through a point $x$ , respectively, $¥mathrm{e}.¥mathrm{g}$ . $C(x)=¥pi(x, I_{x})$ . Let
$x¥in X$ be a periodic point. $T(x)$ denotes the fundamentd (or prime) period of
$x$ . $J^{+}(x)$ denotes the positive prolongational limit set (for the definition of
$J^{+}(x)$ for a local system, see [1], [9] $)$ . If $x¥not¥in J^{+}(x)$ for all $x¥in X$, $r$‘ is said to

be completely unstable. One may notice that $x¥not¥in J^{+}(x)$ if and only if there

exist an open neighborhood $U$ of $x$ and a positive number $T(/_{¥backslash }b_{x})$ such that

$¥pi(U, t)¥cap U=¥phi$ for all $t>T$

(If $(U, t)¥not¥subset ¥mathit{9}$, we understand by $¥pi(U, t)$ the set $¥pi((U, t)¥cap ¥mathit{9})$ . We can replace
$t>T$ by $|t|>T$ $(<¥min ¥{|a_{x}|, b_{x}¥})$ , if the phase space is Hausdorff, cf. [1] $)$ .

Let $U¥subset X$ be an open subset. $¥pi||U$ denotes the restricted local system of
$¥pi$ to $U$ (for the definition of $¥pi||U$, see [8]). $M¥subset X$ is said to be positively (or
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negatively) quasi-invariant if $C^{+}(M)¥subset M$ (or $C^{-}(M)¥subset M$).
Let $x¥in X$ be an isolated singular point, $x$ is called a center if there exists

an open neighborhood $U$ of $x$ such that all points of $U-¥{x¥}$ are periodic, $x$ is
called a generdized saddle if only a finite number (non-zero) of orbits approach
$x$ as $ t¥uparrow+¥infty$ or $ t¥downarrow-¥infty$ (cf. [3], [6]).

Definition 1.2. (cf. [1]). Let $¥pi$ be a local system on X. $¥pi$ is called a
local parallel flow if the following conditions (1) and (2) are satisfied:

(1) $X=¥bigcup_{s¥in S}¥{s¥}¥times J_{s}$ ,

where $S$ is some topological space and for each $s¥in SJ_{s}=(m_{s}, n_{s})$ is an open
interval containing 0.

(2) If $t_{1}¥in J_{s}$ and $t_{1}+t_{2}¥in J_{s}$, then $¥pi((s, t_{1}), t_{2})=(s, t_{1}+t_{2})$ .

(One may notice that by the assumption that $¥pi$ is a local system on $X$, the
domain 9 of $¥pi$ is open in $X¥times R$ and hence $X$ is open in $S¥times R$).

If in particular for each $s¥in S$, $J_{s}=R$ , $¥mathrm{i}.¥mathrm{e}.$ , $X=S¥times R$, we say that $¥pi$ is a
(global) paralld flow.

Let $S$ be a topological space and $f:S¥rightarrow R^{+}$ a positive continuous function.
We define an equivalence relation ? on $S¥times R$ by

$(s_{1}, t_{1})-(s_{2}, t_{2})¥Leftrightarrow s_{1}=s_{2}$ and $t_{1}¥equiv t_{2}¥mathrm{m}¥mathrm{o}¥mathrm{d}(f(s_{1}))$ .

The quotient space $(S¥times R)/-$ is denoted by $Y$. We can assume, without loss
of generality,

$Y=¥bigcup_{s¥in S}¥{s¥}¥times[0,f(s))$ ,

but endowed with the quotient topology of $(S¥times R)/-$.

Fig. 1
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Define $¥rho$ : $Y¥times R¥rightarrow Y$ by

$¥rho((s, r), t)=(s, t^{¥prime})$ for $(s, r)¥in Y$ and $t¥in R$ ,

where $0¥leqq t^{¥prime}<f(s)$ and $t^{¥prime}¥equiv t+r¥mathrm{m}¥mathrm{o}¥mathrm{d}$ $(f(s))$ . Then $¥rho$ is obviously a dynamical
system on $Y$.

Definition 1. 3. The dynamical system $¥rho$ on $Y$ constructed in the manner
described is called a cylindroidally parallel flow (Fig. 1).

§2. General Remarks on Invariant Positive Measures.
Definition 2. 1. Let $¥pi$ and $¥rho$ be local systems on $X$ and on $Y$, respectively,

and let $h$ be a homeomorphism of $X$ onto $Y$. Then $h$ is called an isomorphism

of $¥pi$ onto $¥rho$ (denoted by $ h:¥pi¥rightarrow¥rho$ ) if the following condition $(*)$ is satisfied:
$(*)$ The equality

$h(¥pi(x, t))=¥rho(h(x), t)$

holds whenever the left side is defined. (See [8]. In terms of [8], $(h$ ,
Identity : $R¥rightarrow R$ ) is a type 0 $¥mathrm{G}¥mathrm{H}$-isomorphism.)

We consider measures $¥mu$ on $X$ such that $¥mu$ is a Borel measure and $¥mu(¥{x¥})=0$

for every $x¥in X$ (so that if $X$ is second countable, then $¥mu$ is a Lebesgue measure)
and that $¥mu$ satisfies the following conditions (1) and (2):
(1) If $G¥subset X$ is a non-empty open subset, then $¥mu(G)>0$ .

(2) If $K¥subset X$ is a compact subset, then $¥mu(K)<¥infty$ .
In the sequel, a “ measure ” or a “ positive measure ” is always assumed to satisfy
(1) and (2).

Definition 2. 2. Let $¥pi$ be a local system on $X$. A positive measure on $X$

is called an invariant positive measure with respect to $¥pi$ (or we say that $¥pi$ admits
an invariant positive measure $¥mu$ ) if for every measurable set $A¥subset X$ and for every
$t¥in R$ , we have

$¥mu(¥pi(A, t))=¥mu(A)$ ,

whenever $¥pi(x, t)$ is defined for all $x¥in A$ .
If further the total measure is finite, then $¥mu$ is said to be finite.
Proposition 2. 3. Let $¥pi$ and $¥rho$ be local systems on $X$ and on $Y$, respec-

tively, $h$ : $¥pi¥rightarrow¥rho$ an isomorphism, and $¥mu_{Y}$ an invariant positive measure with
respect to $¥rho$ . For any subset $A$ of $X$ such that $h(A)$ is measurabfe with respect

to $¥rho_{Y}$ , we define
$¥mu_{X}(A)=¥mu_{Y}(h(A))$ .

Then $¥mu_{X}$ is an invariant positive measure with respect to $¥pi$ and is called the
induced invariant measure on $X$ by $¥mu_{Y}$ and $h$ .
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Proof. Since a homeomorphism preserves openness, compactness and taking
arbitrary intersections or arbitrary unions (and hence preserves Borel sets), $¥mu_{X}$

is a positive measure. Further, since $h$ : $¥pi¥rightarrow¥rho$ is an isomorphism, for every
Borel set $A¥subset X$ and for every $t¥in¥bigcap_{x¥in A}I_{x}$ , $¥rho(h(x), t)$ is defined for all $x¥in A$ and
we have

$¥mu_{X}(¥pi(A, t))=¥mu_{Y}(h(¥pi(A, t)))$

$=¥mu_{Y}(¥rho(h(A), t))$

$=¥mu_{Y}(h(A))=¥mu_{X}(A)$ .

Hence $¥mu_{X}$ is an invariant positive measure with respect to $¥pi$ .
Proposition2.4. Let $¥pi$ be a local parallel flow on $X=¥bigcup_{s¥in S}¥{s¥}¥chi J_{s}$ or $a$

cylindroidally pardfef flow on $X=¥bigcup_{s¥in S}¥{s¥}¥times[0,f(s))$ , where $S$ admits a finite
positive measure $¥nu$ , and let $F:S¥rightarrow[1,$ $¥infty$ ) be a measurable function. We define
a new measure $¥mu$ on $X$ by

$¥mu(A)=/_{S}¥int_{-¥infty}^{¥infty}¥frac{¥phi_{A}(s,r)}{F(s)}drd¥nu$

for each measurable set $A¥subset X$ (with respect to a product measure on $(S¥times R)¥cap X$

or $(S¥times R^{+})¥cap X)$ . Then $¥mu$ is an invariant positive measure with respect to $¥pi$ .
Proof. We assume that $¥pi$ is a parallel flow. Since $¥mu$ is obviously a

positive measure, we have only to prove that $¥mu$ is invariant with respect to $¥pi$ .
In order to do this, it is enough to show that for each $A¥subset X$ of the form

$A=S_{1}¥times[t_{1},$ $t_{2})¥subset X$

(where $S_{1}¥subset S$ is a measurable set and $t_{1}¥leqq t_{2}$), we have

$¥mu(A)=¥mu(¥pi(A, t))$ ,

if $¥pi(x, t)$ is defined for all $x¥in A$ . Put

$¥psi_{A}(s)¥equiv¥int_{-¥infty}^{¥infty}¥phi_{A}(s, r)dr$.

Then we have

$¥psi_{A}(s)=¥left¥{¥begin{array}{l}t_{2}-t_{1}s¥in S_{1}¥¥0s¥not¥in S_{1}¥end{array}¥right.$

and

$¥mu(A)=¥int_{S}¥frac{¥psi_{A}(s)}{F(s)}d¥nu$ .

Since $¥pi(A, ¥tau)=S_{1}¥times[t_{1}+t,$ $t_{2}+t$), we have
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$¥psi_{¥pi(A,t)}(s)=¥left¥{¥begin{array}{l}t_{2}-t_{1}s¥in S_{1}¥¥0s¥not¥in S_{1}.¥end{array}¥right.$

Accordingly,

$¥mu(¥pi(A, t))=¥int_{S}¥frac{¥psi_{¥pi(A,t)}(s)}{F(s)}d¥nu$

$=¥int_{S}¥frac{¥phi_{A}(s)}{F(s)}d¥nu=¥mu(A)$ .

Hence $¥mu$ is invariant with respect to $¥pi$ . The same proof is valid for cylindroid-
ally parallel flows.

Corollary 2. 5. If $J_{s}=(m_{s}, n_{s})$ is a finite interval (or $f(s)$ is finite) for
$afl$ $s¥in S$, then $¥pi$ admits a finite invariant positive measure such that $¥mu(X)¥leqq¥nu(S)$ .

Proof. Put $F(s)=n_{s}-m_{s}+1$ or $F(s)=f(s)+1$ . Then $F(s)$ is lower semi-
continuous ([1], [9]), a fortiori, measurable and $ 1<F(s)<¥infty$ . Define $¥mu$ as in
Proposition 2. 4. Then $¥mu$ is an invariant measure. Further, since $¥psi_{X}(s)=n_{s}-$

$m_{s}$ or $¥psi_{X}(s)=f(s)$ , we have

$¥mu(X)=¥int_{S}¥int_{-¥infty}^{¥infty}¥frac{¥phi_{X}(s,r)}{F(s)}drd¥nu=¥int_{S}¥frac{¥phi_{X}(s)}{F(s)}d¥nu$

$¥leqq¥int_{S}d¥nu=¥nu(S)$ .

Hence $¥mu$ is a finite invariant positive measure with respect to $¥pi$ .
Proposition 2. 6. Let $¥pi$ be a local system on $X$, and $¥{U_{i}¥}$ be a countable

open covering of $X$ such that each $U_{i}$ is quasi-invariant. If $¥pi||U_{i}$ admits an
invariant positive measure $¥mu_{i}$ for each $i$ such that for every compact set $K¥subset X$,

there exists $M_{K}$ , $ 0<M_{K}<¥infty$ , satisfying

$¥mu_{i}(K¥cap U_{i})¥leqq M_{K}$ for $alf$ $i$ ,

then $¥pi$ admits an invariant positive measure $¥mu$ such that

$¥mu(K¥cap X)¥leqq M_{K}$ .

If further $¥mu_{i}(U_{i})¥leqq 1$ for all $i$ , then we have $¥mu(X)¥leqq 1$ .
Proof. Define $¥mu$ by

$¥mu(A)=¥sum_{n=1}^{¥infty}¥frac{1}{2^{n}}¥mu_{n}(A¥cap U_{n})$ for every Borel set $A¥subset X$,

then $¥mu$ is obviously a positive measure and

$¥mu(K¥cap X)¥leqq¥sum_{n=1}^{¥infty}¥frac{1}{2^{n}}¥mu_{n}(U_{n}¥cap K)¥leqq M_{K}¥sum_{n=1}^{¥infty}¥frac{1}{2^{n}}=M_{K}$ .

If further $¥pi(x, t)$ is defined for all $x¥in A$ , then
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$¥mu(¥pi(A, t))=¥sum_{n=1}^{¥infty}¥frac{1}{2^{n}}¥mu_{n}(¥pi(A¥cap U_{n}, t))$

$=¥sum_{n=1}^{¥infty}¥frac{1}{2^{n}}¥mu_{n}(A¥cap U_{n})=¥mu(A)$ .

Hence $¥mu$ is an invariant positive measure with respect to $¥pi$ . The second asser-
tion is obvious.

§3. Existence of Invariant Positive Measures for Some Special Flows.
In the sequel we assume that $X$ is $R^{2}$ or $S^{2}$ or an open subset of $R^{2}$ . Since

continuous sections in $X$ are arcs ([6]), we easily obtain Propositions 3. 1 and
3. 4 to follow (cf. [1] and [2], respectively).

Proposition 3. 1. Let $¥pi$ be a completely unstable flow on X. Then for each
$x¥in X$ there exist a quasi-invariant open neighborhood $U$ of $x$, a local parallel
flow $¥rho$ on $Y=¥bigcup_{s¥in S}¥{s¥}¥times J_{s}$ and an isomorphism $h$ : $¥pi||U¥rightarrow¥rho$, where $s¥subset U$ is home-

omorphic to $(0, 1)¥subset R$ and $J_{s}$ is the domain of $¥pi||U(S^{ },¥cdot)$ .

Remark 3.2. The set $S$ in Proposition 3. 1 is a section of $¥pi||U$ and the
mapping $h*$. $U¥rightarrow Y$ is represented as follows:

$h(x)=(s, t)¥in Y$ for $x¥in U$,

where $¥pi(s, t)=x$ . Accordingly for every $V¥subset U$, we have

$h(V)=¥{(s, t);¥pi(s, t)¥in V¥}$ .

If $h(x_{0})=(s_{0}, t_{0})$ and there exists a $>0$ such that for all $|t|>¥alpha$ , $¥pi(x_{0}, t)¥not¥in V$, then
we have

$h(V)_{s_{0}}¥equiv¥{t;¥pi(s_{0}, t)¥in V¥}¥subset[t_{0}-¥alpha, t_{0}+¥alpha]¥subset R$ .

In the sequel, $S$ denotes the open interval (0, 1) $(¥subset R)$ , endowed with the
ordinary Lebesgue measure.

Corollary 3. 3. If $¥pi$ is a completely unstable flow on $X$, and if $I_{x}=(a_{x}, b_{x})$

is a finite intervd for $dl$ $x¥in X$, then $¥pi$ admits a finite invariant positive
measure.

Proof. By Proposition 3. 1, there exist an open covering $¥{U_{i}¥}$ of $X$ and
parallel flow $¥rho_{i}$ on $Y_{i}$ and isomorphisms $h_{i}$ such that for each $i$ , $h_{i}$ : $¥pi||U_{i}¥rightarrow¥rho_{i}$,

where $Y_{i}=¥bigcup_{s¥in S}¥{s¥}¥times J_{S}^{i}$ , $J_{S}^{i}¥subset R$ is a finite open interval containing 0. By Corollary

2. 5, $¥rho_{i}$ admits an invariant positive measure $¥nu_{i}$ such that $¥nu_{i}(Y_{i})¥leqq¥nu(S)=1$ .
Let $¥mu_{i}$ be the induced measure on $U_{i}$ by $¥nu_{i}$ and $h_{i}$ . Then $¥mu_{i}(U_{i})¥leqq 1$ . Hence
by Proposition 2. 6, $¥pi$ admits a finite invariant positive measure.

Proposition 3. 4. Let $¥pi$ be a local system on X. If all points in $X$ are
non-singular periodic, then for each $x¥in X$, there exists an invariant open neigh-
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borhood $U$ of $x$ , a cylindoroidally parallel flow $¥rho$ on $Y=¥bigcup_{s¥in S}¥{s¥}¥times[0,$ $T(s))$ and

an isomorphism $h$ : $¥pi||U¥rightarrow¥rho$ , where $S¥subset U$.
Corollary 3. 5. Let $¥pi$ be a local system on X. If $df$ points in $X$ are non-

singular periodic, then $¥pi$ admits a finite invariant positive measure.
Proof. Combining Corollary 2. 5 and Proposition 2. 6 with Proposition 3. 4,

the proof is done in the same way as above.

§4. Local Existence of Invariant Positive Measures,

Before discussing existence of invariant measures on $X$, we treat the pro-

blem locally. First, we shall introduce the notion of a local invariant measure.
Definition 4. 1. Let $¥pi$ be a local system on $X$, and $x¥in X$. We say that

$¥pi$ admits an invariant positive measure locally at $x$ if there exists an open
neighborhood $U$ of $x$ such that $¥pi||U$ admits a finite $¥mathrm{i}¥mathrm{n}¥mathrm{v}¥mathrm{a}¥mathrm{r}¥mathrm{i}¥_¥mathrm{a}¥mathrm{n}¥mathrm{t}$ positive measure.

Theorem 4. 2. Let $¥pi$ be a local system on X. If $x¥in X$ is regular, then $¥pi$

admits an invariant positive measure locally at $x$ .

Proof. It is known ([9]) that there exists an open neighborhood $U$ of $x$

such that $’¥tau||U$ is isomorphic to a local parallel flow $¥rho$ on $ Y=S¥times$ $(-¥alpha, ¥alpha)$ , where
a is some positive number. By Proposition 2. 3 and Corollary 2. 5, $¥pi||U$ admits
a finite invariant positive measure.

As recalled in the Introduction, the following is known ([7]).
Proposition 4. 3. Let $¥pi$ be a local system, and $x¥in X$ an isolated singular

point. If $¥pi$ admits an invariant positive measure locally at $x$ , then $x$ is $a$

center or a generalized saddle.
The main purpose of this section is to establish the converse, $¥mathrm{i}.¥mathrm{e}.$ ,

Theorem 4. 4. Let $¥pi$ be a focd system on X. If $x$ is a center or a gener-

dized saddle, then $¥pi$ admits an invariant positive measure locdiy at $x$ .

Proof of the Theorem for a center $x$ . If $x$ is a center, then there exists
an open neighborhood $U$ of $x$ such that all points in $U-¥{x¥}$ are non-singular
periodic. By Corollary 3. 5, $¥pi||(U-¥{x¥})$ admits a finite invariant positive
measure $¥mu^{¥prime}$ . Put

$¥mu(A)=¥mu^{¥prime}(A-¥{x¥})$ for every Borel set $A¥subset U$.

Then $¥mu$ has the desired properties.
Next we treat generalized saddles, we need the following lemma, which

is a direct consequence of the definition of a generalized saddle.
Lemma 4. 5. Let $¥pi$ be a local system on $X$ and $x$ a generalized saddle.

Then there exists an open neighborhood $U$ such that $¥pi||(U-C_{x})$ satisfies the
conditions of Corollary 3. 3, where $C_{x}=$ {$y$ ; $L^{+}(y)=¥{x¥}$ or $L^{-}(y)=¥{x¥}$ }.

Proof of the Theorem for a generalized saddle x. Let U be an $¥mathrm{o}¥mathrm{p}¥mathrm{e}¥mathrm{r}_{-}$.

neighborhood of x as in Lemma 4. 5. By Corollary 3. 3, $¥pi||(U-C_{x})$ admits $¥mathrm{a}$
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finite invariant positive measure $¥mu^{¥prime}$ . Define $¥mu$ by

$¥mu(A)=¥mu^{f}(A-C_{x})$ for every Borel set $A¥subset U$.

then $¥mu$ has the desired properties.
Remark 4.6. Measures constructed above are Lebesgue measures, but not

ordinary one on $R^{2}$ .

§5. Global Existence of Invariant Positive Measures.
We restrict our consideration to a local system $¥pi$ on $R^{2}$ for which there are

only a finite number of singular points. In this section, we shall seek necessary
and sufficient conditions for existence of invariant positive measures with respect
to $’¥tau$ .

Lemma 5. 1. If there exists a relatively compact open subset $U¥subset R^{2}$ suck
that $C^{+}(U)¥subset¥overline{U}$ and $C^{-}(U)¥mathrm{I}¥overline{U}$ (or $C^{-}(U)¥subset¥overline{U}$ and $C^{+}(U)¥not¥subset¥overline{U}$), then $¥pi$ admits
no invariant positive measure.

Proof. We assume the contrary, $¥mathrm{i}.¥mathrm{e}.$ , $¥pi$ admits an invariant positive
measure $¥mu$ . By symmetry we can assume that $C^{+}(U)¥subset¥overline{U}$ and $C^{-}(U)¥mathrm{I}¥overline{U}$.
Then, by the continuity of $¥pi$ , there exist an open subset $V¥subset U$ and $t>0$ such
that $¥pi(V, -t)¥cap U=¥phi$. Since $¥mu$ is invariant and $¥pi(¥pi(V, -t)¥cup U, t)¥subset U$, we have

$¥infty>¥mu(U)¥geqq¥mu((¥pi(V, -t)¥cup U, t))=¥mu(¥pi(V, -t)¥cup U)$

$=¥mu(V, -t)+¥mu(U)=¥mu(V)+¥mu(U)$ .

This is a contradiction to $¥mu(V)>0$ .

Theorem 5.2. Let $¥pi$ be a local system on $R^{2}$ and assume that there are
only a finite number of singular points. Then the following statements (1), (2)
and (3) are equivalent:
(1) $¥pi$ admits an invariant positive measure.
(2) (i) Every singular point is a center or a generalized saddle.

(ii) For a non-periodic point $x¥in X$, $L^{+}(x)$ and $L^{-}(x)$ each contains at

most one point.

(3) $C=$ { $x¥in X$ ; non-periodic and either $ L^{+}(x)¥neq¥phi$ or $ L^{-}(x)¥neq¥phi$ } consists of
a finite number of orbits.

Proof. $(2)¥Leftrightarrow(3)$ is immediate. We shall prove that $(1)¥Leftrightarrow(2)$ .
$(1)¥Rightarrow(2)$ : By the results in §4, (2) (i) is obvious. In order to prove (2)

(ii) by reductio $¥mathrm{a}¥mathrm{d}$ absurdum, we assume that there exists a non-periodic point
$x¥in X$ such that $L^{+}(x)$ contains at least two points. Then $L^{+}(x)$ contains at
least one regular point, say $y$ , since we have only a finite number of singular
points by our standing hypothesis ([6]). Let $S$ be a local section at $y$ . Since
$y¥in L^{+}(x)$ , $C^{+}(x)$ intersects $S$ at infinitely many points. Let $s_{1}$ and $s_{2}$ be arbitrary
successive intersections of $S$ and $C^{+}(x)$ , and let $U$ be the region surrounded by
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a closed curve $¥hat{s_{1}Cs_{2}s}_{1}$ (Fig. 2). Then $U$ obviously satisfies the conditions of
Lemma 5. 1. This is a contradiction to our assumption. For the negative
limit set, we can prove similarly.

$(2)¥ni(1)$ : Let $¥mathrm{S}$ and $¥not¥in$) denote the set of singular points and the set of
periodic points, respectively. Put

$ M=R^{2}-¥Phi$ and $P_{0}=ff-¥mathrm{S}$ .

Let $N$ and $M_{0}$ be defined by

$N=$ {$ x¥in M;L^{+}(x)¥neq¥phi$ or $ L^{-}(x)¥neq¥phi$ }
and

$M_{0}=R^{2}-¥overline{P}_{0}-¥mathrm{S}-N$.

Since the fact that $L^{+}(x)(L^{-}(x))$ is a singleton implies that $L^{+}(x)(L^{-}(x))¥subset ¥mathrm{S}$ ,

we can easily see that $N$ consists of a finite number of orbits. (Recall that
every singular point is a center or a generalized saddle).

In order to prove $(2)¥Rightarrow(1)$ , we need several lemmas. To simplify the
discussion, we shall assume here that $¥pi$ is a global system on $R^{2}$ , but the same
proof with slight modifications is valid for a local system $¥pi$ on $R^{2}$ .

Lemma 5. 3. $P_{0}$ and $M_{0}$ are open in $R^{2}$ and $P_{0}¥cup M_{0}$ is dense in $R^{2}$ .
Proof. Since S is closed in $R^{2}$ and since $¥overline{N}¥subset ¥mathrm{S}¥cup N$ by assumption, $M_{0}$ is

obviously open. We shall show that $P_{0}$ is open. Assume the contrary. Then
there exists $C(x)¥subset P_{0}$ such that for every neighborhood $V$ of $C(x)$ , we have

$ V¥cap M¥neq¥phi$ .

Therefore we can easily see that either $C(x)$ itself is a limit cycle or there
exists a non-singular limit cycle (cf. [6]), $¥mathrm{i}.¥mathrm{e}.$ , there exists $x¥in M$ such that
$L^{+}(x)$ or $L^{-}(x)$ is not a singleton. This is a contradiction to the assumption
that for every $x¥in M$, each of $L^{+}(x)$ and $L^{-}(x)$ contains at most one point.
Hence $P_{0}$ is open. The second assertion is obvious, since $ R^{2}=P_{0}¥cup M_{0}¥cup ¥mathrm{S}¥cup N¥cup$

$(¥overline{P}_{0}-P_{0})$ , $¥mathrm{S}$ is a finite set and $N$ consists of a finite number of orbits.
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Lemma 5.4. $¥pi||M$ is completely unstable and so is $¥pi||M_{0}$ .
Proof. To prove the lemma by reductio $¥mathrm{a}¥mathrm{d}$ absurdum, assume that there

exists $x¥in M$ such that $x¥in J^{+}(x)$ . Then we can prove, as in the proof of (1)
$¥Rightarrow(2)$ , that there exists an open set satisfying the conditions of Lemma 5. 1.
So there exist a infinitie number of non-periodic orbits such that the limit set

( $+$ or ?) is non-empty. Since $N$ contains at most a finite number of orbits,
this is a contradiction. Hence $x¥not¥in J^{+}(x)$ for all $x¥in M$, $¥mathrm{i}.¥mathrm{e}.$ , $¥pi||M$ is completely
unstable. The second assertion is obvious.

By Lemma 5. 4 and Proposition 3. 1, there exist a countable open covering
$¥{V_{i}¥}$ of $M_{0}$ such that every $V_{i}$ is invariant with respect to $¥pi$ , a parallel flow

$¥rho$ on $Y=S¥times R$ and an isomorphism $h_{i}$ for every $i$ such that $h_{i}$ : $¥pi||V_{i}¥rightarrow¥rho$ . Let
$V¥subset R^{2}$ be a relatively compact open set. Put

$F^{V}i(s)=¥int_{-¥infty}^{¥infty}¥phi_{h_{i}(V¥cap V_{i})}(s, r)dr$ for each $i$ ,

where $¥emptyset h_{i}(V¥cap V_{i})$ is the characteristic function of $h_{i}(V¥cap V_{i})¥subset Y$.

Lemma $¥bm{5}_{¥sim}5_{¥sim}$ For each $i$ , $F^{V}i$ is a measurable function of $S$ into [0, $¥infty$ ). If
further there exists $T>0$ such that for all $|t|>T$,

$¥pi(V, t)¥cap V=¥phi$ ,

then $F^{V}i(s)<2T$ for all $s¥in S$ and $i$ .

Proof. Since $ L^{+}(x)=¥phi$ for all $x¥in M_{0}$, there exists $T_{x}$ such that $¥pi(x, t)¥in V$

for all $|t|>T_{x}$ . By Remark 3. 2,

$F^{V}i(s)=¥int_{-¥infty}^{¥infty}¥phi h_{i}(V¥cap V_{i})(s, r)dr¥leqq 2T_{x}$ ,

where $h_{i}(x)=(s, t_{0})$ . Hence $F_{i}^{V}$ is a mapping of $S$ into [0, $¥infty$ ). Further, since
$h_{i}(V¥cap V_{i})$ is open in $Y$, $F^{V}i$ is measurable by Fubini’s Theorem. The second
assertion is obvious.

Lemma 5. 6. $¥pi||M_{0}$ admits an invariant positive measure $¥mu$ such that for
every compact set $K¥subset R^{2}$

$(*)$ $¥mu(K¥cap M_{0})<¥infty$ .

Proof. Let $V_{0}$ be a relatively compact open neighborhood of $¥mathrm{S}$ in $R^{2}$ . For
each $i$ , define an invariant positive measure $¥nu_{i}$ on $Y$ by

$¥nu_{i}(A)=¥int_{0}^{1}¥int_{-¥infty}^{¥infty}¥frac{¥phi_{A}(s,r)}{F_{i}^{V¥mathrm{o}}(s)+1}drds$

for every Borel set $A¥subset Y$. By Lemma 5. 5 and Proposition 2. 4, $¥nu_{i}$ is invariant
with respect to $¥rho$ . Let $¥mu_{i}$ be the invariant measure on $V_{i}$ induced by $¥nu_{i}$ and
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$h_{i}$ . We shall show that $¥mu_{i}$ satisfies the condition in Proposition 2. 6, $¥mathrm{i}.¥mathrm{e}.$ , for
every compact set $K¥subset R^{2}$ , there exists a constant $¥alpha_{K}$ such that

$¥mu_{i}(K¥cap M_{0})<¥alpha_{K}$ for all $i$ .

If $x¥in M¥cap K$, since $x¥not¥in J^{+}(x)$ by Lemma 5. 4, there exist an open neighborhood
$V(x)$ and a positive number $T_{x}$ such that for all $|t|>T_{x}$ we have

$¥pi(V(x)¥cap M_{0}, t)¥cap V(x)=¥phi$ .

Then $¥{V(x), V_{0}, P_{0}¥}_{x¥in M¥cap K}$ is an open covering of $K$ in $R^{2}$ . Since $K$ is compact,
we can assume

$K¥cap M_{0}¥subset¥bigcup_{j=1}^{n}V(x_{j})¥cup V_{0}$ .

Put

$T=j¥{T_{x_{j}}¥}$ .

Then for each $¥mathrm{f}$ , we have

$¥mu_{i}(V_{0}¥cap V_{i})=¥nu_{i}(h_{i}(V_{0}¥cap V_{i}))$

$=¥int_{0}^{1}¥int_{-¥infty}^{¥infty}¥frac{¥phi_{h_{i}(V_{0}¥cap V_{i})}(s,r)}{F_{i}^{V_{0}}(s)+1}drds$

$=¥int_{0}^{1}¥frac{F_{i}^{V_{0}}(s)}{F_{i}^{V¥mathrm{o}}(s)+1}ds¥leqq 1$

and

$¥mu_{i}(V(x_{j})¥cap V_{i})=¥int_{0}^{1}¥int_{-¥infty}^{¥infty}¥frac{¥phi_{h_{i}(V(x_{j})¥cap V_{i})}(s,r)}{F_{i}^{V¥mathrm{o}}(s)+1}drds$

$=¥int_{0}^{1}¥frac{F_{i}^{V(x_{¥mathrm{j}})}(s)}{F_{i}^{V_{0}}(s)+1}ds$ $(j=1,2, ¥cdots, n)$ .

By Lemma 5. 5, we have $F^{V(x_{¥mathrm{j}})}i(s)¥leqq 2T(j=1,2, ¥cdots, n)$ for all $s¥in S$. Hence we
have

$¥mu_{i}(V(x_{j})¥cap V_{i})¥leqq 2T$ $(j=1,2, ¥cdots, n)$ .

Consequently,

$¥mu_{i}(K¥cap V_{i})¥leqq¥mu_{i}(V_{0}¥cap V_{i})+¥dot{f}¥sum_{=1}^{n}¥mu_{i}(V(x_{j})¥cap V_{i})$

$¥leqq 1+2nT$ $(i=1,2, ¥cdots, n)$ .

Therefore, by Proposition 2. 6, $¥pi||M_{0}$ admits an invariant positive measure $¥mu$

satisfying $(*.)$ .

Proof of $(¥bm{1})¥Rightarrow(2)$ in Theorem 5. 2. By Corollary 3. 5 and Lemma 5. 6,
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$¥pi||P_{0}$ and $¥pi||M_{0}$ admit invariant positive measures $¥mu^{1}$ and $¥mu^{2}$ , respectively, where
$¥mu^{1}$ is finite and $¥mu^{2}$ satisfies $(*)$ in Lemma 5. 6.

Define $¥mu$ by

$¥mu(A)=¥mu^{1}(A¥cap P_{0})+¥mu^{2}(A¥cap M_{0})$

for each Borel set $A¥subset R^{2}$ . Then $¥mu$ is obviously invariant. Further, by Lemma
5. 3, for a non-empty open set $G¥subset R^{2}$ , we have $ G¥cap P_{0}¥neq¥phi$ or $ G¥cap M_{0}¥neq¥phi$ . Hence
$¥mu(G)>0$ . Since $¥mu^{1}$ is finite and $¥mu^{2}$ satisfies $(*)$ in Lemma 5. 6, we have

$¥mu(K)=¥mu^{1}(K¥cap P_{0})+¥mu^{2}(K¥cap M_{0})<¥infty$,

for every compact set $K¥subset R^{2}$ . Consequently $¥mu$ is an invariant positive measure.
Lemma 5.7. Let $¥pi$ be a global parallel flow on $X=S¥times R$ . Then $¥pi$ does

not admit any finite invariant positive measure.
Proof. Assume that $¥pi$ admits a $¥mathrm{f}¥mathrm{i}¥mathrm{n}¥mathrm{i}¥mathrm{t}¥dot{¥mathrm{e}}$ positive invariant measure $¥mu$ and

put $S_{n}=S¥times[n-1,$ $n$) $(n=1,2,3, ¥cdots)$ . Then we have $¥pi(S_{1}, n-1)=S_{n}$ and $ s_{n}¥cap$

$ S_{m}=¥phi$ for $n¥neq m$ . Hence we have

$¥infty>¥mu(X)¥geqq¥mu(¥bigcup_{n=1}^{¥infty}S_{n})=¥sum_{n=1}^{¥infty}¥mu(S_{n})=¥infty$ .

This is a contradiction.
Using Lemma 5. 7 just proved, we have the following
Corollary 5.8. Let $¥pi$ be a global dynamical system on X. If there exists

an open subset $U¥subset X$ such that $¥pi||U$ is parallelizable, then $¥pi$ does not admit
any finite invariant positive measure.

Theorem 5. 9. Let $¥pi$ be a global dynamical system on $R^{2}$ and assume that
there are only a finite number $of_{¥sim}$ singular points. Then $¥pi$ admits a finite in-
variant positive measure if and only if the number of non-periodic orbits is
finite.

Proof. We shall use notations in Theorem 5. 2. Sufficiency: $M_{0}$ contains
only a finite number of orbits by the assumption and $M_{0}$ is open in $R^{2}$ by Lemma
5. 3. Hence we have $ M_{0}=¥phi$, $¥mathrm{i}.¥mathrm{e}.$ , $P_{0}$ is dense in $R^{2}$ . By Corallary 3. 5, $¥pi||P_{0}$

admits a finite invariant positive measure. Consequently, $¥pi$ admits a finite
invariant positive measure.

Necessity: Assume the contrary, $¥mathrm{i}.¥mathrm{e}.$ , $¥pi$ has an infinite number of non-
periodic orbits. By Corollary 5. 8, we have $ M_{0}=¥phi$ , $¥mathrm{i}.¥mathrm{e}.$ , $R^{2}=¥overline{P}_{0}¥cup ¥mathrm{S}¥cup N$.
Since $¥mathrm{S}¥cup N$ consists of a finite number of orbits by Theorem 5. 2, $P_{0}$ is dense
in $R^{2}$ and $H=¥overline{P}_{0}-P_{0}-N-¥mathrm{S}$ contains an infinite number of orbits. If $x¥in H$,
$C(x)$ separates $R^{2}$ into two regions, each of which contains at least one periodic
orbit, because $ L^{¥pm}(x)=¥phi$ and $P_{0}$ is dense in $R^{2}$ . Hence by induction, we can
easily see that $R^{2}-H$ has an infinite number of connected components, each of
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which contains at least one periodic orbit. Since the bounded region surrounded
by a periodic orbit contains at least one singular point, we can conclude that
$¥pi$ has an infinite number of singular points. This is a contradiction to our
standing assumption.

§6. An Invariant Positive Measure on $S^{2}$ .
Let $¥pi$ be a dynamical system on $S^{2}$ , so that $¥pi$ is global, and assume that

there are only a finite number of singular points. Since $S^{2}$ is compact, we
shall consider only finite positive measures. Let $x_{0}¥in S^{2}$ be a singular point.
Then there exists a homeomorphism $h$ : $S^{2}-¥{x_{0}¥}¥rightarrow R^{2}$ . Define a dynamical
system $¥pi^{*}$ on $R^{2}$ by

$¥pi^{*}(x, t)=h(¥pi(h^{-1}(x), t))$

for all $x¥in R^{2}$ , then $h$ is an isomorphism $¥pi||¥{S^{2}-¥{x_{0}¥}¥}¥rightarrow¥pi^{*}$.
Proposition 6. 1. $¥pi$ admits an invariant positive measure if and only if $¥pi^{*}$

admits a finite invariant positive measure.
Proof. Easy.
Combining this Proposition with Theorem 5. 9, we obtain the following:
Theorem 6. 2. Let $¥pi$ be a dynamical system on $S^{2}$ , and assume that there

are only a finite number of singular points. Then $¥pi$ admits a finite invariant
positive measure if and only if the number of non-periodic orbits is finite.
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