Cauchy Problem for Hyperbolic Systems in L^p

By Masaru Taniguchi

(Science University of Tokyo)

§ 1. Introduction.

This paper concerns the Cauchy problem for hyperbolic systems in L^p , $p \neq 2$, $1 \leq p \leq \infty$,

(1)
$$\begin{cases} \frac{\partial u}{\partial t} = \sum_{j=1}^{n} A_{j} \frac{\partial u}{\partial x_{j}} + B \cdot u \\ u(0, x) = u_{0}(x), \quad (t, x) \in [0, T] \times \mathbb{R}^{n}. \end{cases}$$

The corresponding problem for wave equation has been treated by Littman [4]. Also, Brenner [1] has investigated the same problem for symmetric hyperbolic systems, whose results contained one of Littman. Brenner has proved that the problem (1) for symmetric hyperbolic systems is well posed in $L^p(p\neq 2)$, if and only if the matrices A_j commute. We prove that the same result as Brenner's holds under weaker condition than strong hyperbolicity for (1). We say that (1) is a strongly hyperbolic system if for all $\xi = (\xi_1, \dots, \xi_n) \in \mathbb{R}^n - \{0\}$, the eigenvalues of $A(\xi) = \sum_{j=1}^n A_j \xi_j$ are real and $A(\xi)$ is uniformly diagonalizable in ξ . It is well known that (1) is strongly hyperbolic if and only if it is well posed in L^2 [7]. From our result, we think that function space L^2 , together with function space $\mathcal{E}[5]$, is suitable for hyperbolic equations.

Our main theorem (§ 3) follows by application of techniques developed by Hörmander [2] and Brenner [1], and a matrix lemma (§ 2).

I wish to thank Professor H. Sunouchi for several helpful discussions.

§2. A matrix lemma.

Matrices, for which any complex linear combination $\alpha A + \beta B$ has as characteristic roots the numbers $\alpha \lambda_i + \beta \mu_i$, are said to have property L[6]. Here, we prove a lemma for matrices with property L which is useful for proof of the theorem.

Lemma. Let $M_j(j=1,\dots,l)$ be $N\times N$ matrices such that the next two conditions hold,

(i) for all $\alpha = (\alpha_1, \dots, \alpha_l) \in \mathbb{R}^l - \{0\}$, the eigenvalues of $M(\alpha) = \sum_{j=1}^l M_j \alpha_j$ are real and $M(\alpha)$ is diagonalizable,

(ii) the eigenvalues of $M(y) = \sum_{j=1}^{l} M_j y_j$ for all $y = (y_1, \dots, y_l)$ in an open non void ball K in \mathbb{R}^l are of the form

$$\sum_{j=1}^{l} \alpha_{kj} y_j \qquad (k=1,\cdots,N)$$

where the α_{kj} are constant.

Then, the matrices M_1, \dots, M_l commute.

Proof. Without loss of generarity, we have only to prove the lemma when l=2. From the regularity of the both members in the equality

$$\det\left(\lambda I - \sum_{j=1}^{2} M_{j} y_{j}\right) = \prod_{k=1}^{N} \left(\lambda - \sum_{j=1}^{2} \alpha_{kj} y_{j}\right), \quad y \in K,$$

we see that it is also satisfied for all $y=(y_1,y_2)\in \mathbb{C}^2$.

We set $M(\kappa) = M_1 + \kappa M_2$. By the assumptions, the eigenvalues of $M(\kappa)$ are of the form $\lambda_j(\kappa) = \alpha_{j1} + \kappa \alpha_{j2}$ $(j=1,\dots,N)$. Let $\lambda_j(\kappa)$ be an eigenvalue with constant multiplicity, and $P_{m_j}(\kappa)$ be an eigenprojection associated with $\lambda_j(\kappa)$. To prove $M_1M_2 = M_2M_1$, we investigate the regularity of eigenprojections $P_{m_j}(\kappa)$ for $\lambda_j(\kappa)$.

(1) Im $\kappa \neq 0$.

Multiplicity of the eigenvalues of $M(\kappa)$ is constant. For, we assume that $\lambda_i(\kappa_0) = \lambda_j(\kappa_0)$ for some $\kappa_0 \in \mathbb{C}$, Im $\kappa_0 \neq 0$. Let κ_0 be $\kappa_{01} + i\kappa_{02}$ (κ_{01} , κ_{02} are real and $\kappa_{02} \neq 0$).

$$\lambda_{i}(\kappa_{0}) = \alpha_{i1} + \kappa_{0}\alpha_{i2} = (\alpha_{i1} + \kappa_{01}\alpha_{i2}) + i\kappa_{02}\alpha_{i2}$$

$$= \lambda_{j}(\kappa_{0}) = \alpha_{j1} + \kappa_{0}\alpha_{j2} = (\alpha_{j1} + \kappa_{01}\alpha_{j2}) + i\kappa_{02}\alpha_{j2}$$

$$\therefore \quad \alpha_{i1} = \alpha_{j1}, \quad \alpha_{i2} = \alpha_{j2}$$

$$\therefore \quad \lambda_{i}(\kappa) = \lambda_{j}(\kappa); \quad \kappa \in \mathbf{C} \text{ and } \operatorname{Im} \kappa \neq 0.$$

Therefore, multiplicity is constant. Then, from Kato [3; pp.63~74], eigen-projection $P_{m_j}(\kappa)$ is holomorphic function of κ in $C^+=\{z\mid \text{Im}z>0\}$ and $C^-=\{z\mid \text{Im}z<0\}$.

(2) Im $\kappa = 0$.

By the assumptions, M_1 is diagonalizable and $\lambda_j(\kappa)$ has the form $\alpha_{j1}+\kappa\alpha_{j2}$ $(j=1,\dots,N)$. So, by the theory of reduction process in Kato [3; pp.81~83, pp.85], $P_{m_j}(\kappa)$ is holomorphic at $\kappa=0$. The same is true at real κ since $M(\kappa)$ and $\lambda_j(\kappa)$ $(j=1,\dots,N)$ are linear in κ , and $M(\kappa)$ is diagonalizable for any real κ . Thus, $P_{m_j}(\kappa)$ is holomorphic at any real κ .

 $P_{m_i}(\kappa)$ is holomorphic at $\kappa = \infty$. For, M_2 is diagonalizable, and the eigen-

projections of $M(\kappa) = \kappa(M_2 + \kappa^{-1}M_1)$ coincide with of $M_2 + \kappa^{-1}M_1$, to which the theory of reduction process applies to $\kappa = \infty$. So, $P_{m_j}(\kappa)$ is holomorphic at $\kappa = \infty$.

Hence, from ①,② and ③, $P_{m_j}(\kappa)$ is holomorphic everywhere including $\kappa = \infty$, and so must be a constant by Liouville's theorem. Since M_1 and M_2 have common eigenprojections and both are diagonalizable, they commute. Thus lemma is proved.

Remark 1. This matrix lemma contains the results obtained by Motzkin and Taussky where M_1 and M_2 are Hermitian [6].

§ 3. Cauchy problem.

We first introduce some notations. If $v = (v_1, \dots, v_N)$ and $u = (u_1, \dots, u_N)$ are complex vectors, $\langle u, v \rangle$ will denote their scalar product and |v| the Euclidean norm,

$$\langle u, v \rangle = \sum_{j=1}^{N} u_{j} \bar{v}_{j}, \quad |v| = \left(\sum_{j=1}^{N} |v_{j}|^{2}\right)^{1/2}.$$

If $v_j \in \mathcal{S}(\mathbb{R}^n)$ for $j=1,\dots,N$, then we say that $v=(v_1,\dots,v_N) \in \mathcal{S}$. By \mathcal{L}^p we mean the set of functions $v=(v_1,\dots,v_N)$ with $v_j \in L^p(\mathbb{R}^n)$ $(j=1,\dots,N)$ and for $p<+\infty$, we set

$$||v||_p = \left(\int_{R^n} |v(x)|^p dx\right)^{1/p}$$

and for $p = \infty$

$$||v||_{\infty}$$
 = ess sup $\{|v(x)|: x \in \mathbb{R}^n\}$.

We now turn to the Cauchy problem. Let $A_j(j=1,\dots,n)$ and B be $N\times N$ constant matrices and let u(t,x) and $u_0=u_0(x)$ be N-dimensional complex vector functions. We consider the Cauchy problem

(1)
$$\begin{cases} \frac{\partial u}{\partial t} = \sum_{j=1}^{n} A_j \frac{\partial u}{\partial x_j} + B \cdot u \\ u(0, x) = u_0(x), \quad (t, x) \in [0, T] \times \mathbb{R}^n. \end{cases}$$

We assume that the next condition (I) holds for (1),

Condition (I): for all $\xi = (\xi_1, \dots, \xi_n) \in \mathbb{R}^n - \{0\}$, the eigenvalues of $A(\xi) = \sum_{i=1}^n A_i \xi_i$ are real and $A(\xi)$ is diagonalizable.

Definition. The Cauchy problem (1) is well posed in L^p if for each $u_0 \in \mathcal{S}$, there is a solution u=u(t,x) of (1) in \mathcal{L}^p norm which satisfies the inequality

$$||u(t,\cdot)||_{p} \leq C(T)||u_{0}||_{p}, \quad 0 \leq t \leq T.$$

Such a solution is unique.

Remark 2. For $p=\infty$, the above definition of well-posedness is weaker than the usual one since \mathcal{S} is not dense in \mathcal{L}^{∞} .

Theorem. Suppose $p \neq 2$, $1 \leq p \leq \infty$. Then under the condition (I), the Cauchy problem (1) is well posed in L^p if and only if the matrices A_1, \dots, A_n commute.

The proof of the theorem is similar to Brenner's [1] and is ommited.

By the remark 2, this theorem gives a necessary condition for the usual definition of well-posedness in L^{∞} .

Remark 3. Under the condition (I), the matrices A_1, \dots, A_n commute if and only if A_1, \dots, A_n are diagonalizable simultaneously. Consequently, if the Cauchy problem (1) is well posed in $L^p(p \neq 2)$ under the condition (I), (1) is strongly hyperbolic.

Remark 4. When we treat non-linear hyperbolic equations with more than one space variable, we think that the above theorem is useful for the choice of function spaces for the Cauchy problem of those equations.

References

- [1] P. Brenner, The Cauchy problem for symmetric hyperbolic systems in L^p , Math. Scand., 19 (1966), 27-37.
- [2] L. Hörmander, Estimates for translation invariant operators in L^p spaces, Acta Math., 104 (1960), 93-140.
- [3] T.Kato, Perturbation Theory for Linear Operators, Die Grundlehren der Math. Wiss. Vol. 132, Springer-Verlag, Berlin, 1966.
- [4] W. Littman, The wave operator and L^p norms, J. Math. Mech., 12 (1963), 55-68.
- [5] S. Mizohata, Theory of Partial Differential Equations (in Japanese), Iwanami, 1965.
- [6] T.S. Motzkin and O. Taussky, Pairs of matrices with Property L, Trans. Amer. Math. Soc., 73 (1952), 108-114.
- [7] G. Strang, On strong hyperbolicity, J. Math. Kyoto Univ., 6 (1967), 393-417.

(Ricevita la 16-an de novembro, 1971)