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Cauchy Problem for Hyperbolic Systems in L?

By Masaru TanNicucHl

(Science University of Tokyo)

§1. Introduction.

This paper concerns the Cauchy problem for hyperbolic systems in L?, p#2,
1sp=oo,

at Z‘A +Bu

Jj=1 6
u(0, ) =uo(x), (¢, )0, TIXR".

(1

The corresponding problem for wave equation has been treated by Littman [4].
Also, Brenner [1] has investigated the same problem for symmetric hyperbolic
systems, whose results contained one of Littman. Brenner has proved that the
problem (1) for symmetric hyperbolic systems is well posed in L?(p+2), if
and only if the matrices A; commute. We prove that the same result as
Brenner’s holds under weaker condition than strong hyperbolicity for (1). We
say that (1) is a strongly hyperbolic system if for all £=(&, -, £, ) ER"— {0},
the eigenvalues of A(§)= X‘, At are real and A(£) is uniformly diagonalizable
in £ It is well known that (1) 1is strongly hyperbolic if and only if it is well
posed in L% [7]. From our result, we think that function space L?, together
with function space £ [5], is suitable for hyperbolic equations.

Our main theorem'(§ 3) follows by application of techniques developed by
Hoérmander [2] and Brenner [1], and a matrix lemma (§2).

I wish to thank Professor H.Sunouchi for several helpful discussions.

§2. A matrix lemma. .
Matrices, for which any complex linear combination @A+ BB has as charac-
teristic roots the numbers «l;+4Bu;, are said to have property L[6]. Here, we

prove a lemma for matrices with property L which is useful for proof of the
theorem.

Lemma. Let M;(j=1,---,1) be NXN matrices such that the next two con-
ditions hold, '

1
(i) for all a=(ay,,a)ER'—{0}, the eigenvalues of M(a)= 3! Ma;
i=1

are real and M(«) is diagonalizable,
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1
(ii) the eigenvalues of M(y)= > M,y; for all y=(yy, -,y in an open
i=1
non void ball K in R? are of the form

Zlakiyj (k=1,--,N)
=

where the ay; are constant.

Then, the matrices My, ---, M; commute.

Proof. Without loss of generarity, we have only to prove the lemma
when [=2. From the regularity of the both members in the equality

) 2 N 2
det <u~ ST My ,->: 1I (A— P cvk,-yj), yEK,
j=1 k=1 Jj=1

we see that it is also satisfied for all y=(y,, y.) =C?2.

We set M(k)=M;+kM,. By the assumptions, the eigenvalues of M(k)
are of the form A;(k)=aj+kaj, (j=1,---;N). Let d;(x) be an eigenvalue with
constant multiplicity, and Pm;(¥) be an eigenprojection associated with /1,-(1%:).
To prove M,M,=M,M,, we investigate the regularity of eigenprojections Psm;(x)
for 4;(x). '

@® Imk+0.

Multiplicity of the eigenvalues of M(x) is constant. For, we assume that
A (k) =Aj(ky) for some k,&C, Imky#0. Let £, be ko +ikee (Kop, Koz are real
and Ifogi()). :

Ai(Kko) = +Koin= (@it +Eo1is) + 1K oaiz
=lj("r'o)=“j1+’foaj2=(6¥j1+/fo1aj2)+ilfo2“j2

&1 =&j,, &=&;j

A()=A;(k); k<C and Im k+0.
Therefore, multiplicity is constant. Then, from Kato [3; pp.63~74], eigen-
projection Pm;(x) is holomorphic function of £ in C*={z | Imz>0} and C~=
{z| Im 2<0}.

® Imk=0.

By the assumptions, M, is diagonalizable and A;(#) has the form aj +rea;j,
(j=1,---, N). So, by the theory of reduction process in Kato [3; pp.81~83,
pp. 851, Pm;(k) is holomorphic at #=0. The same is true at real £ since M(x)
and A;(k) (j=1,.--,N) are linear in k£, and M(x) is diagonalizable for any real
k. Thus, Pm;(x) is holomorphic at any real &.

® k=oo.

Pm;(r) is holomorphic at k=oco. For, M, is diagonalizable, and the eigen-
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projections of M(x)=x(M,+£"'M;) coincide with of My+£~'M;, to which the
theory of reduction process applies to k=co. So, Pm;(k) is holomorphic at
k=oco0.

Hence, from @,® and (), Pwm;(k) is holomorphic everywhere including
k=o0, and so must be a constant by Liouville’s theorem. Since M, and M,
have common eigenprojections and both are diagonalizable, they commute. Thus
lemma is proved.

Remark 1. This matrix lemma contains the results obtained by Motzkin
and Taussky where M; and M, are Hermitian [6].

§3. Cauchy problem.
We first introduce some notations. If v=(vy,---,vn) and u=(uy, -, uy) are
complex vectors, <{u,v) will denote their scalar product and [v| the Euclidean
norm, ‘

N 1/2
G 0y= Y usb lv|=<é1]vj]2>/.

If v;€S(R?) for j=1,---, N, then we say that v=(vy, -, on)EF By _L? we
mean the set of functions v=(vy, -+, vn) with v;eL?(R") (j=1,---,N) and for

p<+oo, we set
1/p
lollo=( | loCa)1#dz)

[lvlle =ess sup {jv(x)| : x&R"}.

and for p=co

We now turn to the Cauchy problem. Let A;(j=1,:--,n) and B be NXN
constant matrices and let «(z, ) and uy=u,(x) be N-dimensional complex vector
functions. We consider the Cauchy problem

au___iA Ou +B-u

(1) 9t =7 ox;
u(0, x)=u,(x), (¢, x)<[0, TIXR".
We assume that the next condition (I) holds for (1),
Condition (I) : for all £é=(&y, -, £,)ER”— {0}, the eigenvalues of A(§)=
i AjE; are real and A(£) is diagonalizable.
= Definition. The Cauchy problem (1) is well posed in L? if for each =¥,

there is a solution u#=u(¢, x) of (1) in _{? norm which satisfies the inequality

e, INp=C(Dlluollpy 0=t=T.
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Such a solution is unique.

Remark 2. For p=o0o, the above definition of well-posedness is weaker
than the usual one since & is not dense in _[=. A

Theorem. Suppose p+2, 1=<p=oco. Then under the condition (1), the
Cauchy problem (1) is well posed in L? if and only if the matrices A, -+, A,
commute.

The proof of the theorem is similar to Brenner’s [1] and is ommited.

By the remark 2, this theorem gives a necessary condition for the usual
definition of well-posedness in L*.

Remark 3. Under the condition (I), the matrices A4y, -, A, commute if
and only if Ay, ---, A, are diagonalizable simultaneously. Consequently, if the
Cauchy problem (1) is well posed in L?(p#2) under the condition (I), (1) is
strongly hyperbolic.

Remark 4. When we treat non-linear hyperbolic equations with more than
one space variable, we think that the above theorem is useful for the choice of
function spaces for the Cauchy problem of those equations.
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