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Connectedness Properties of Start Points
in Semi-Dynamical Systems
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0. Introduction.
In [2], we discussed some properties of start points in products of semi-

dynamical systems. Notions of $¥mathrm{p}¥mathrm{r}¥mathrm{o}¥mathrm{p}¥mathrm{e}¥mathrm{r}/¥mathrm{i}¥mathrm{m}¥mathrm{p}¥mathrm{r}¥mathrm{o}¥mathrm{p}¥mathrm{e}¥mathrm{r}$ start points were introduced and
a criterion established for a point to be an improper start point. Necessary
and sufficient conditions for sets of $¥mathrm{p}¥mathrm{r}¥mathrm{o}¥mathrm{p}¥mathrm{e}¥mathrm{r}/¥mathrm{i}¥mathrm{m}¥mathrm{p}¥mathrm{r}¥mathrm{o}¥mathrm{p}¥mathrm{e}¥mathrm{r}$ start points to be dense
everywhere were obtained. In this paper, we discuss the connectedness pro-
perties of these sets. This paper is divided into two sections. In the first
section we prove that, in a semi-dynamical system $(X, ¥pi)$ , set of start points
does not disconnect an open connected set; and the (path) connectedness of $X$

is equivalent to that of $X-S$. The second section is devoted to products of
semi-dynamical systems, and we examine connectedness and path connectedness
of the sets of $¥mathrm{p}¥mathrm{r}¥mathrm{o}¥mathrm{p}¥mathrm{e}¥mathrm{r}/¥mathrm{i}¥mathrm{m}¥mathrm{p}¥mathrm{r}¥mathrm{o}¥mathrm{p}¥mathrm{e}¥mathrm{r}$ start points and of the set of start points. In
the presence of just two start points in different factor semi-dynamical systems,
(path) connectedness of product space is equivalent to (path) connectedness of
the set of proper start points. The case when only one of the factor systems
contains a start point is also considered. Further in the presence of an improper
start point, (path) connectedness of the set of start points or the set of improper
start points is equivalent to (path) connectedness of the product space. Results
on path connectedness are in contrast with the situation in topology where
closure of a path connected set is not necessarily path connected; indeed in a
topological space $X$ if $A¥subset K¥subset ClA$ and both $A$ , $¥mathrm{C}¥mathrm{I}¥mathrm{A}$ are path connected, the
set $K$ is not necessarily path connected. Further [5, §31. 6] similar theorems
on arc connectedness hold for Hausdoroff spaces.

Some of the results of this paper are from the author’s Ph. $¥mathrm{D}$ thesis written
under the direction of Professor Nam P. Bhatia.

Notation and definitions used are the same as in [2, §1].

1. Some Basic Theorems.
Lemma 1. 1. Let $(X, ¥pi)$ be a $semi-dynamical$ system. Let $U$ be an open
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subset of $X$ and $x_{¥mathit{1}}$ a net in $U$ such that $x_{¥lambda}¥rightarrow x¥in U$. Define a function $ E:U¥rightarrow$

$ R^{+}¥cup$ $¥{+¥infty¥}$ by $ E(x)=¥sup$ $¥{¥theta¥geqq 0 : x[0, ¥theta]¥subset U¥}$ , $x¥in U$. Then there exists $T>0$ such
that $¥inf_{¥lambda¥geqq ¥mathit{1}_{0}}E(x_{¥lambda})¥geqq T$ for some $¥lambda_{0}$ .

Proof. Suppose not; then there exists a sub-net $E(x_{¥lambda})$ converging to zero.
Without loss of generality, let $E(x_{¥lambda})¥rightarrow 0$ . Since $U$ is open, $x_{¥lambda}E(x_{¥lambda})¥in¥theta U$ , so
that $x_{¥lambda}E(x_{¥lambda})¥rightarrow x0=x¥in¥partial U$. But $x¥in U$ and $U$ is open; contradiction.

Theorem 1.2. In a semi-dynamical system $(X, ¥pi)$ the set of start points
does not disconnect an open connected set.

Proof. Let $S$ be the set of start points and $U$ an open connected sub-set
of $X$. If possible, let $U-S$ be not connected. Then there exist disjoint non-
empty sets $G_{1},G_{2}$ open in $U-S$ such that $U-S=G_{1}¥cup G_{2}$ . Define the function
$E$ as in the lemma. Then $U-S=¥bigcup_{x¥in U}x(0, E(x))=G_{1}¥cup G_{2}$. Clearly, for every
$x¥in U$, $x(0, E(x))$ is contained in one of $G_{1}$ , $G_{2}$ and does not intersect the other.
Thus the sets $X_{1}=¥{x¥in U:x(0, E(x))¥subset G_{1}¥}$ and $X_{2}=¥{x¥in U:x(0, E(x))¥subset G_{2}¥}$ are
disjoint. Moreover, $X_{1}¥cup X_{2}=U$ and $ X_{1}¥neq¥phi$ , $ X_{2}¥neq¥phi$ . Then $X_{1}$ is open in $U$.
Indeed, otherwise, there exists a net $x_{¥mathit{1}}$ in $X_{2}$ such that $x_{¥lambda}¥rightarrow x¥in X_{1}$ . Then,
making preliminary adjustments if necessary, $¥inf_{¥lambda}E(x_{¥lambda})¥geqq T$ for some $T>0$. Pick
$T^{¥prime}$ such that $0<T^{¥prime}<¥min(T, E(x))$ . Then $x_{¥lambda}T^{¥prime}¥in G_{2}$, $xT^{¥prime}¥in G_{1}$ . But $x_{¥lambda}T^{¥prime}¥rightarrow xT^{¥prime}$.
It contradicts that $G_{1},G_{2}$ are open in $U-S$. Similarly $X_{2}$ is open in $U$. Thus
$X_{1}$ , $X_{2}$ form a disconnection of $U$; contradiction.

Theorem 1. 3. $Le¥mathrm{f}$ $(X,¥pi)$ be a semi-dynamical system. Let $S$ be the set

of start points. Then X?S is (path) connected if and only if $X$ is (path) con-
nected.

Proof. If $X$ is connected, then connectedness of $X-S$ follows from the
previous theorem.

Now let $X$ be path connected [5, p. 197]. Let $x$ , $y¥in X-S$ ; then $x=x_{1}T$,
$y=y_{l}T$ for some $T>0$, and $x_{1}$ , $y_{1}$ in $X-S$. If $f:I¥rightarrow X$ is a path joining $x_{1}$ to
$y_{1}$ , then $¥pi^{T}¥circ f:I¥rightarrow X-S$ is a path from $x$ to $y$ in $X-S$.

For the converse notice that $C1(X-S)$ and that points on a positive
trajectory are path connected.

2. Products of Semi-Dynamical Systems.
Let $(X_{a}, ¥pi_{a})$ , $¥alpha¥in a$ be a family of semi-dynamical systems and $(X, ¥pi)$ the

product [2, §2. 2] semi-dynamical system. Throughout $S_{a}$ denotes the set of
start points in $(X_{a}, ¥pi_{a});S$, $S^{*}$ , $S-S^{*}$ , denote, respectively, the sets of start points,
proper start points [2, Def. 2. 5] and improper start points in $(X, ¥pi)$ .

Theorem 2. 1. Let $(X_{a}, ¥pi_{a})$ , a $¥in a$ and $(X, ¥pi)$ be as above. Let $S_{¥mu}$ , $S_{¥nu}$ be
non-empty for some distinct $¥mu$ and $¥mathrm{v}$ in $a$ . Then the set of proper start points
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is (patK) connected if and only if $X$ is (path) connected.
Proof. Let $X$ be (path) connected so that $X_{a}$ is (path) connected for

each $¥mathrm{a}$ . Let $z=¥{z_{a}¥}_{a¥in a}$, $z^{¥prime}=¥{z_{a}^{¥prime}¥}_{¥mathrm{a}¥in a}$ be proper start points so that $z_{¥rho}¥in S_{¥rho}$ and
$zp’¥in S_{¥beta}$ for some $¥rho$ , $¥beta$ in $a$ .

If $¥rho¥neq¥beta$ , consider the sets

$K_{1}=¥{z_{¥rho}¥}¥times¥prod_{a¥neq¥rho}X_{a}$ , $K_{2}=¥{z¥rho’¥}¥times a¥neq¥beta ¥mathrm{I}¥mathrm{I}X_{a}$ .

Clearly $K_{1}$ , $K_{2}$ are (path) connected sub-sets of $S^{*}$ . Moreover, $ K_{1}¥cap K_{2}¥neq¥phi$ and
$z¥in K_{1}$ , $z^{¥prime}¥in K_{2}$ . Thus $K_{1}¥cup K_{2}$ is a (path) connected sub-set of $S^{*}$ and contains
the points $z$ , $z^{¥prime}$ .

If $¥rho=¥beta$, one of $¥beta¥neq¥mu$ , $¥beta¥neq¥nu$ must hold, say the former. Let $x_{¥mu}¥in S_{¥mu}$ . Con-
sider the (path) connected sets

$K_{1}=¥{z_{fl}¥}¥times a¥mathrm{I}¥mathrm{I}X_{a}¥neq¥beta’ K_{2}=¥{Z¥beta’¥}¥times¥prod_{a¥neq¥beta}X_{a}$ and $K_{3}=¥{x_{¥mu}¥}¥times¥prod_{¥mathrm{a}¥neq¥#}X_{a}$ .

Since $ K_{1}¥cap K_{3}¥neq¥phi$ , $ K_{2}¥cap K_{3}¥neq¥phi$ , therefore, $K_{1}¥cup K_{2}¥cup K_{3}$ is a (path) connected
sub-set of $S^{*}$ . Moreover $z$ , $z^{¥prime}¥in K_{1}¥cup K_{2}¥cup K_{3}$ . Hence $S^{*}$ is (path) connected.

Conversely let $S^{*}$ be (path) connected. We need show that $X_{a}$ is (path)

connected for every $¥alpha$ . Let $¥beta¥in a$ be arbitrary and $z_{¥beta}$ , $z¥beta’¥in X_{¥beta}$ , $z_{¥beta}¥neq z¥rho’$ . One of
$¥beta¥neq¥mu$ , $¥beta¥neq¥nu$ must hold, say the former. Let $s_{¥mu}¥in S_{¥mu}$ . Pick $x$ and $y$ in $X$, $x=¥{x_{a}¥}$ ,
$y=¥{y_{a}¥}$ such that $x_{¥mu}=s_{¥mu}=y_{¥mu}$, $x_{¥beta}=z_{¥beta}$ , and $y_{¥beta}=z¥beta’$. Then $x$ , $y$ are proper start
points. Since $S^{*}$ is (path) connected, $¥mathrm{p}¥mathrm{r}¥mathrm{o}¥mathrm{j}_{¥beta}$ $(S^{*})¥subset X_{¥beta}$ is a (path) connected set

containing $z_{¥beta}$ , $Z¥beta’$ . Hence $X_{¥beta}$ is (path) connected, etc.,
Corollary 2. 2. If $X$ is connected and $S_{a}$ is non-empty for infinitely many

a in $a$ , then $S$ is connected.
Proof. Here $S^{*}$ is dense [2, Th. 2. 13] in $X$, and, so, $S^{*}¥subset S¥subset X=¥mathrm{C}1S^{*}$ etc.,
Remark 2. 3. The following example shows that (path) connectedness of

$S^{*}$ does not imply that of $S_{a}$ for every a $¥in a$ .
Let $X_{1}=[0,$ $¥infty$ ) $¥subset R$ . Define $¥pi_{1}$ : $X_{1}¥times R^{+}¥rightarrow X_{1}$ by $¥pi_{1}(x, t)=x+t$ , $x¥in X_{1}$ , $t¥in R^{+}$ .

Let $X_{2}=¥{(x_{1},0) : x_{1}¥geqq 0¥}¥cup¥{(x_{1}, x_{2}):-1¥leqq x_{2}¥leqq 1, x_{1}=-|x_{2}|¥leqq 0¥}¥subset R^{2}$ .
Define $¥pi_{2}$ : $X_{2}¥times R^{+}¥rightarrow X_{2}$ by

$¥pi_{2}((x_{1}, x_{2}), t)=(x_{1}+t, x_{2}^{¥prime})$ , $(x_{1}, x_{2})¥in X_{2}$, $t¥in R^{+}$ where

$x_{2}^{¥prime}=¥max(x_{2}-t, 0)$ or $¥min(x_{2}+t, 0)$ according as $x_{2}¥geqq 0$ or $x_{2}<0$ .
Let $(X, ¥pi)$ be the product of $(X_{1}, ¥pi_{1})$ and $(X_{2}, ¥pi_{2})$ . Clearly $S^{*}$ is (path)

connected but $S_{2}$ is not.
Theorem 2.4. Let $(X_{a}, ¥pi_{a})$ , a $¥in a$ and $(X, ¥pi)$ be as above. Suppose that

$S_{¥beta}$ is non-empty for unique $¥beta$ in $a$ . Then $S^{*}$ is (patK) connected if and only if
both the following conditions hold:
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$(X_{1},¥pi_{1})$

(a) $S_{¥beta}$ is (path) connected.
(b) $X_{¥mathrm{a}}$ is (path) connected for every $¥alpha¥neq¥theta$ .

Proof. Notice that $S^{*}=S_{¥beta}¥times¥prod_{a¥neq¥beta}X_{a}$ .

Corollary 2. 5. Let $(X_{a}, ¥pi_{a})$ , a $¥in a$ and $(X, ¥pi)$ be as above. Let $S_{¥beta}$ be
connected and dense in $X_{¥beta}$ for some $¥beta$ in $a$ . Let $X_{a}$ be connected for every $¥alpha¥neq¥beta$ .

Then $S$ is connected.
Proof. Here $S^{*}$ is dense [2, Th. 2. 13] in X, etc.,
Theorem 2. $¥epsilon$ . Let $(X_{a}, ¥pi_{a})$ , a $¥in a$ and $(X, ¥pi)$ be as above. Let there exist

an improper start point. The following are equivalent:

(a) $X$ is connected.
(b) The set of improper start points is connected.
(c) The set of start points in $(X, ¥pi)$ is connected.
Proof. (a) implies (B) : Let $x=¥{x_{a}¥}$ , $y=¥{y_{a}¥}$ be improper start points.

Let $¥tau(x_{a})$ be the escape time of $x_{a}$ . Then there exist sequences $¥{¥alpha_{n}¥}$ and $¥{¥beta_{n}¥}$

in $a$ such that both $¥tau(x_{a_{n}})$ and $¥tau(y_{¥beta_{n}})$ converge to zero.
We can take $¥alpha_{i}¥neq¥beta_{j}$ for every $i$ and every $j$ . Indeed if $¥alpha_{i}=¥beta_{j}$ for finite

number of pairs $(i,j)$ , we can drop the terms $x_{a}$ . and $y_{¥beta_{j}}$ of the sequences which
correspond to such pairs. If a $i=¥beta_{j}$ for infinite number of pairs $(i,j)$ , we can
make preliminary adjustments.

Now let $K_{1}=a=a_{n}¥Pi¥{x_{a}¥}¥times a¥neq a_{n}¥Pi(X_{a}-S_{a})$ and $K_{2}=¥prod_{a=¥beta_{¥#}}¥{y_{a}¥}¥times¥prod_{a¥neq¥beta_{n}}(X_{a}-S_{a})$ . Clearly

$x¥in K_{1}¥subset S-S^{*}$ and $y¥in K_{2}¥subset S-S^{*}$ . Since the sets $K_{1}$ and $K_{2}$ are connected and
$ K_{1}¥cap K_{2}¥neq¥phi$ , it follows that $K_{1}¥cup K_{2}$ is a connected subset of $S-S^{*}$ . Moreover,
$x¥in K_{1}$ and $y¥in K_{2}$ etc.,

(b) implies (c) : Since $S-S^{*}$ is dense everywhere [2, Th. 2. [2, and
$S-S^{*}¥subset S¥subset Cl(S-S^{*})$ , the result follows.

(c) implies (a) : Notice that $S$ is dense [2, Th. 2. 12] in $X$.

Theorem 2. 7. Let $(X_{a}, ¥pi_{a})$ , a $¥in a$ and $(X, ¥pi)$ be as above. Let there exist
an improper start point. Then the set of improper start points is path con-

nected if and only if $X$ is path connected.
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Proof. Let the set of improper start points be path connected. Let $x_{¥beta}$ and
$ x^{¥prime}¥beta$ be in $X_{¥beta}-S_{¥beta}$ for $¥beta$ fixed. Let $z¥in S-S^{*}$ , $z=¥{z_{a}¥}$ . Pick $y$ and $y^{¥prime}$ in $X$ such
that $y_{¥beta}=x_{¥beta}$ , $ y¥rho’=x^{¥prime}¥rho$ and $y_{a}=z_{a}=y_{a}^{¥prime}$ otherwise. Let $f:I¥rightarrow S-S^{*}$ be a path joining
improper start points $y$ and $y^{¥prime}$ . Then $¥mathrm{P}¥mathrm{r}¥mathrm{o}¥mathrm{j}_{¥beta}^{¥prime}¥circ f:I¥rightarrow X_{¥beta}-S_{¥beta}$ is a path joining
$x_{¥beta}$ and $x¥rho’$ where proj $¥beta’$ is th erestriction of $¥mathrm{p}¥mathrm{r}¥mathrm{o}¥mathrm{j}_{¥beta}$ : $X¥rightarrow X_{¥beta}$ to $¥mathrm{p}¥mathrm{r}¥mathrm{o}¥mathrm{j}_{¥beta}^{-1}(X_{¥beta}-S_{¥beta})$ .
Thus $X_{¥beta}-S_{¥beta}$ and so, $X_{¥beta}$ is path connected etc.,

Proof of the converse is left to the reader.
Theorem 2. 8. Let $(X_{a}, ¥pi_{a})$ , a $¥in a$ and $(X, ¥pi)$ be as above. Let there exist

an improper start point. Then the set $S$ of start points is path connected if
and only if $X$ is path connected.

Proof. Let $S^{*}$ be non-empty (for otherwise Th. 2. 7 applies). Let $X$ be
path connected. We need prove that a proper start point and an improper
start point can be joined by a path in $S$. Let $x¥in S^{*}$ , $x=¥{x_{a}¥}$ so that $x_{¥beta}¥in S_{¥beta}$ for
some $¥beta$ in $a$ . Let $y¥in S-S^{*}$, $y=¥{y_{a}¥}$ . Let $¥tau(y_{a})$ be the escape time of $y_{a}$ .
Then there exists a sequence $(y_{a_{n}})$ converging to zero. We may take $¥beta¥neq$a$n$

for every $n$ .
Pick $z¥in X$ such that $z_{¥beta}=x_{¥beta}$ , $z_{a}=y_{a}$ for $¥alpha=¥alpha_{n}$ for every $n$ . Since $K=¥Pi¥{y_{a_{n}}¥}$

$n$

$¥times¥prod_{a¥neq a_{n}}X_{¥alpha}¥subset S$ is path connected and $y$, $z¥in K$, there exists a path $f:I¥rightarrow ¥mathrm{S}$ joining

$y$ to $z$ . Similarly $x$ and $z$ . Hence the result.
Details of the other part are left to the reader.
Corollary 2. 9. Let $(X_{a}, ¥pi_{a})$ , a $¥in a$ and $(X, ¥pi)$ be as above. Let there exist

an improper start point. The $fo¥Pi owing$ are equivalent:
(a) $X$ is path connected.
(b) The set of improper start points is path connected.
(c) The set of start points in $(X, ¥pi)$ is path connected.
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