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On the Existence of Solutions of

Ordinary Differential Equations in Banach Spaces

By Arrigo CELLINA

(Florence University)

We consider the Cauchy problem

(CP) $¥frac{dx}{dt}=f(t, x(t))$ , $x(0)=x^{0}$,

where $f:N¥times V¥rightarrow E$ is continuous, $N$ is a neighborhood of 0 in the real line, $E$

is an infinite dimensional Banach space with norm $||¥cdot||$ , $V¥subset E$ is an open set
containing $x^{0}$ . Then there exist a closed set $Q:||x-x^{0}||¥leqq b$ and an interval $[0, a]$

such that $f$ is bounded $(¥mathrm{i}.¥mathrm{e}. ||f||¥leqq K)$ on $[0, a]¥times Q$ . Set $¥Delta=¥min¥{a, b/K¥}$ and
$I=[0, ¥Delta]$ . We are interested in proving the existence of a solution of (CP)
defined on $L$

Let $C(I)$ be the normed linear space of continuous functions on I with the
usual supremum norm (here denoted by $|||¥cdot|||$ ) and $C_{Q}(I)¥subset C(I)$ be the subset
of those functions with values in $Q$ . We are going to show the existence of
a fixed point of the operator $T:C_{Q}(I)¥rightarrow C_{Q}(I)$ defined by

(1) $Tx(t)=x^{0}+¥int_{0}^{t}f(s, x(s))ds$

It is known [5] that such a fixed point would be a (strongly) differentiate
function satisfying (CP).

Let us first remark that $T$ is a continuous mapping from $C_{Q}(I)$ into itself.
In fact let $x^{¥prime}$ , $x_{n}$ belong to $C_{Q}(I)$ and let $x_{n}¥rightarrow x^{r}$ . Since $f(s, x_{n}(s))$ converges
to $f(s, x^{¥prime}(s))$ pointwise, in view of the extension to integrals of vector-valued
functions of the Lebesgue Dominated Convergence Theorem [6], for every $t¥in I$,
$Tx_{n}(t)¥rightarrow Tx^{¥prime}(t)$ . The set of functions $¥{Tx_{n}¥}$ is equicontinuous and this fact
implies [4] that $|||Tx_{n}-Tx^{r}|||¥rightarrow 0$.

In what follows we shall make use of the index $¥alpha$ introduced by Kuratowski
[1]. For the properties of this index we refer to [1], [3] and Q8]. We shall
repeatedly make use of the following generalization of the Ascoli-Arzela Theorem
due to Ambrosetti [1]:

Theorem 1. Let $H¥subset C(I)$ be bounded and equicontinuous and set $H(t)=$

$¥{u=u(t):u(¥cdot)¥in H¥}$ . Then
$¥alpha(H)=¥sup¥{¥alpha(H(t)):t=I¥}¥leftarrow$ .
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About the existence of solutions of (CP) the following result is known
(Szufla [8]):

Theorem 2. Let $I=[0, a]$ , $E$ a real Banach space and $Q=¥{x¥in E:||x-x^{0}||$

$¥leqq b¥}$ . If $f:I¥times Q¥rightarrow E$ is a continuous mapping such that $¥alpha(f(I¥times S))¥leqq k¥alpha(S)$

for any subset $S$ of $Q$, where $k$ is a constant, then (CP) admits at least one
solution defined on $[0, ¥mathrm{A}]$ where $h¥leqq¥min(a, b/K)$ , $hk<1$ and $ K=¥sup$ { $||f(t;x)||$ :
$(t, x)¥in I¥times Q¥}$ .

Szufla’ $¥mathrm{s}$ theorem strengthenes an analogous result of Ambrosetti in the sense
that it requires the continuity of $f$ instead of the uniform continuity as in [1].

Let us introduce the function $L:R^{+}¥rightarrow R^{+}$ defined by

$ L(¥epsilon)=¥sup$ $¥{¥alpha(f(I¥times S))/¥alpha(S)¥}$

the supremum being taken over all subsets $S¥subset Q$ such that $¥alpha(S)¥geqq¥epsilon$ . It is clear
that $L(¥epsilon)$ increases as $¥epsilon$ decreases and it is not difficult to see that $L(¥mathrm{e})$ is
continuous. Moreover we have that

(2) $¥alpha(f(I¥times S))¥leqq¥epsilon L(¥epsilon)$

for every $S¥subset Q$ such that $¥alpha(S)¥leqq¥epsilon$ . In fact (2) certainly holds if $¥alpha(S)=¥epsilon$ . Let
$¥alpha(S)<¥epsilon$, and choose $S^{0}¥subset Q$ such that $¥alpha(S^{0})=¥epsilon$ . Then

$¥alpha(f(I¥times S))¥leqq$a $(f(I¥times(S¥cup S^{0})))¥leqq ¥mathrm{e}L(¥epsilon)$ .

A third claim about $L(¥epsilon)$ is that $¥epsilon L(¥epsilon)$ is monotonie non decreasing. In fact
assume that there exist $¥epsilon^{¥prime}$ and $¥epsilon^{rr}$ : $¥epsilon^{¥prime}<¥epsilon^{rr}$ such that $¥epsilon^{¥prime}L(¥epsilon^{/})=¥epsilon^{¥prime¥prime}L(¥mathrm{e}^{¥prime¥prime})+¥xi$ , $¥xi>0$.
In particular then, $L(¥epsilon^{¥prime¥prime})¥leqq L(¥epsilon^{¥prime})-¥xi/¥epsilon^{¥prime¥prime}$ . Set $¥eta=¥xi/2¥mathrm{e}^{r;}$ . There exists $S:¥alpha_{¥backslash }^{(}S$ ) $¥geqq¥epsilon^{r}$

such that $¥alpha(f(I¥times S))(¥alpha(S))^{-1}¥geqq L(¥epsilon^{¥prime})-¥eta$. Then $¥alpha(S)¥leqq¥epsilon^{¥prime¥prime}$ , otherwise $L(¥mathrm{c}^{¥prime¥prime}.)$

would be not less than $ L(¥epsilon^{¥prime})-¥eta$ . By (2), $¥epsilon^{¥prime¥prime}L(¥epsilon^{¥prime¥prime})¥geqq¥alpha(f(I¥times S))¥geqq¥alpha(S)(L(¥epsilon^{¥prime})$

$-¥eta)¥geqq¥epsilon^{¥prime}L(¥epsilon^{¥prime})-¥eta¥epsilon^{¥prime¥prime}=¥epsilon^{¥prime}L(¥epsilon^{¥prime})-¥xi/2$, contradicting the assumption.
We notice that these last properties of $L$ depend on the possibility of choos-

ing subsets of $Q$ having preassigned (sufficiently small) $¥alpha$ . In our case this is
allowed by the convexity of $Q$ .

Finally let us remark that $L(¥mathrm{e})$ is $¥equiv 0$ when $f$ is a compact mapping and it is
bounded by some constant when $f$ is $¥alpha$-lipschitzean. Our theorem 3 below yields
existence of solution of (CP) under a condition on $L(¥mathrm{e})$ that can be considered
as an analogue of the Osgood uniqueness condition. In particular, this condi-
tion allows $L(¥mathrm{e})$ to diverge as $¥mathrm{L}¥mathrm{o}¥mathrm{g}(1/¥epsilon)$ , as $¥mathrm{e}$ tends to zero. More precisely
we have

Theorem 3. Let $f$ be defined and continuous as before. Assume that

(3) $¥int_{0^{+}}¥frac{d¥mathrm{e}}{¥epsilon L(¥epsilon)}=¥infty$

Then (CP) admits at least one solution defined on $[0, ¥Delta]$ .
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For its proof we shall need the two following Lemmata. The first Lemma
establishes a relation between the $¥alpha$-properties of $f$ and those of the integral
operator defined by (1). We use the notation $B[A, ¥delta]$ for a $¥delta$-ball about $A$

and $¥overline{co}¥{A¥}$ for the closed convex hull of $A$ . Moreover when $S$ is a family of
mappings, $S(t)$ denotes its section at $t$ , $¥mathrm{i}.¥mathrm{e}$ . $S(t)=¥{x(t):x(¥cdot)¥in S¥}$ and when $I$

is an interval, $S(I)=$ {$x(t):x(¥cdot)¥in S$ and $t¥in I$}.
Lemma 1. Let $I=[0, ¥Delta]$ and $S¥subset CQ(I)$ be any equicontinuous family of

mappings. Set $¥eta=¥sup$ $¥{¥alpha(S(t)):t¥in I¥}$ . Then

$¥alpha(T(S))¥leqq¥Delta L(¥eta)¥eta$ .

Proof. We are going to show that for every $¥xi>0$,

$¥alpha(T(S))¥leqq¥Delta L(¥eta)¥eta+¥xi$

Set $¥delta^{¥prime}=¥xi/4K$. We claim that it is enough to prove that for some partition
$ 0=t_{0}<t_{1}<¥cdots<t_{m}=¥Delta$ such that $¥sup(t_{i+1}-t_{i})¥leqq¥delta^{¥prime}$, for $i=0,1$ , $¥cdots$ , $m$,

(4) $¥alpha(T(S)(t_{i}))¥leqq¥Delta L(¥eta)¥eta+¥frac{¥xi}{2}$

In fact if (4) holds, given any $t¥in[t_{j}, t_{j+1}]$ ,

$T(S)(t)¥subset B[T(S)(t_{j}), K¥delta^{¥prime}]=B[T(S)(t_{j}),$ $¥frac{¥xi}{4}]$

$¥mathrm{i}.¥mathrm{e}$ .

$¥alpha(T(S)(t))¥leqq¥alpha(T(S)(t_{j}))+¥frac{¥xi}{2}¥leqq¥Delta L(¥eta)¥eta+¥xi$.

But then, since the family $T(S)$ is equicontinuous, from Theorem 1 it follows
that $¥alpha(T(S))¥leqq¥Delta L(¥eta)¥eta+¥xi$.

Let $¥eta’>¥eta$ be such that $¥eta^{;}L(¥eta^{¥prime})¥leqq¥eta L(¥eta)+¥xi/3¥Delta$ . The equicontinuity of $S$

implies that there exists a $¥delta^{¥prime¥prime}>0$ such that from $t^{¥prime}$ , $t^{¥prime¥prime}¥in I$ and $|t^{¥prime}-t^{rr}|¥leqq¥delta^{¥prime¥prime}$ it
follows that $||x(t^{¥prime})-x(t^{¥prime¥prime})||¥leqq(¥eta^{¥prime}-¥eta)/2$ for every $x¥in S$. Let $m$ be a positive inte-
ger such that $¥Delta/m¥leqq¥min$ $[¥delta^{¥prime},¥grave{¥mathit{0}}^{rr}]$ , and take a partition of I into $m$ subintervals
of length $¥Delta/m$ by the points $t_{i}=i¥Delta/m$ . Since

$f(I¥times S([t_{i}, t_{i+1}]))¥subset f(I¥times B[S(t_{i}), ¥frac{1}{2}(¥eta^{r}-¥eta)])$

then

$¥alpha(¥overline{co}¥{f(I¥times S([t_{i}, t_{i+1}]))¥})=¥alpha(f(I¥times S([t_{i}, t_{i+1}])))¥leqq¥eta^{r}L(¥eta^{;})¥leqq¥eta L(¥eta)+¥frac{¥xi}{3¥Delta}$ .

For each $i$ , cover $¥overline{co}¥{f(I¥times S([t_{i}, t_{i+1}]))¥}$ by a finite number of sets $F_{i,j}$ : $j=$

$1,2$, $¥cdots$ , $¥nu(i)$ , having diameter not larger than $¥eta L(¥eta)+¥xi/2¥Delta$. Consider the
$¥nu(0)¥nu(1)¥cdots¥nu(m-1)$ subsets of $C(I):C(j(0),j(1), ¥cdots,j(m-1))$ , where $y¥in C(j(0)$ ,
$j(1)$ , $¥cdots,j(m-1))$ if $y$ is picewise linear, $f?(0)=x^{0}$ , $y^{¥prime}(t)$ is constant on $t_{i}<t<t_{i+1}$
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and $y^{¥prime}¥in F_{i,j(i)}$ there. Each $C(j(0),j(1), ¥cdots,j(m-1))$ is an equicontinuous family
of functions and the diameter of its section at $t=t_{i}$ is not larger than $i¥Delta/m$

$(¥eta L(¥eta)+¥xi/2¥Delta)¥leqq¥Delta¥eta L(¥eta)+¥xi/2$ . It is now simple to see that for each $i$ , the
section of $T(S)$ at $t=t_{i}$ is covered by the union of the sections at $t=t_{i}$ of the
$C(j(0),(1), j¥cdots, j(m-1))$ . In fact let $x¥in S$ : by the mean value theorem,

$x^{0}+¥int_{0}^{¥Delta}f(s, x(s))ds=x^{0}+¥sum_{t=0}^{m-1}¥zeta_{i}¥frac{¥Delta}{m}$

where $¥zeta_{i}¥in¥overline{co}¥{f(s, x(s)):t_{i}¥leqq s¥leqq t_{i+1}¥}$ , $¥mathrm{i}.¥mathrm{e}$ . $¥zeta_{i}¥in F_{i,j(i)}$ for some choice of the $j(i)$ .
The continuous and picewise linear function $y$ such that $y(0)=x^{0}$ and $y^{¥prime}(t)¥equiv¥zeta_{i}$

on $t_{i}<t<t_{i+1}$ belongs to $C(j(0),j(1), ¥cdots, j(m-1))$ and agrees with $T(x)$ at every
$t_{i}$ . Therefore the section of $T(S)$ at each $t_{i}$ is covered by the (finite) union
of the sections of the $C(j(0),j(1), ¥cdots,j(m-1))$ so that its $¥mathrm{o}¥mathrm{e}$ is not larger than
$¥Delta¥eta L(¥eta)+¥xi/2$ . By our previous claim the Lemma is proved.

In particular, when $f$ is $¥alpha$-lipschitzean of modulus $k$ , $T$ is $¥alpha$-lipschitzean

(on equicontinuous sets) of modulus $¥mathrm{k}¥mathrm{A}$ . A result of this kind was established
by Ambrosetti [1] under the hypothesis of uniform continuity of /.

The following Lemma was essentially proved in [3].
Lemma 2. Let $¥ovalbox{¥tt¥small REJECT} 4$ be a closed, bounded and convex subset of a Banach

space $X$ and $T:¥ovalbox{¥tt¥small REJECT} t¥rightarrow¥ovalbox{¥tt¥small REJECT} t$ be continuous and such $tha_{¥nu}¥neq for$ some $¥mathrm{e}>0$ there exists
a constant $h<1$ such that $¥alpha(T(S))¥leqq h¥alpha(S)$ for every $s¥subset¥ovalbox{¥tt¥small REJECT}$ such that $¥alpha(S)¥geqq¥epsilon$ .
Then there exists a closed and convex subset $M¥subset ffl$ such that $T(M)¥subset M$ and
$¥alpha(M)¥leqq¥epsilon$ . Moreover, $M$ contains the (possibly empty) set of fixed points of $T$

on $¥ovalbox{¥tt¥small REJECT} t$ .
Proof of Theorem 3. Roughly speaking, the proof goes as follows: fixing

$¥eta>0$ we see that by taking $¥delta$ sufficiently small (say $¥delta¥leqq(2L(¥eta))^{-1}$), in view of
Lemma 1, the operator $T$ considered on $[0, ¥delta]$ acts as an $¥alpha$-contraction on any
equicontinuous subset $S$ of $C[0, ¥delta]$ , such that $¥alpha(S)¥geqq¥eta$ . Applying Lemma 2,
we infer the existence of a subset of $C[0, ¥delta]$ , mapped into itself by $T$, whose
$¥alpha$ is not greater than $¥eta$ . If we wish to apply this process again, in order to
have a nested sequence of sets whose $¥alpha^{r}¥mathrm{s}$ go to zero, we face the problem that
the interval $[0, ¥delta]$ (in general) tends to zero with $¥eta$ . Since we need to have
sets of functions defined on a constant interval, say $[0, ¥Delta]$ , the problem then
becomes that of showing the existence of a subset of $C[0, ¥Delta]$ , mapped into
itself by $T$, whose $¥alpha$ goes to zero with $¥eta$ . For a fixed $¥eta$ , the construction of
such a set is carried by subdividing the inteval $[0, ¥Delta]$ into a number of sub-
intervals and by applying Lemma 2 to each of them.

Since the case $L(¥epsilon)¥equiv 0$ has been already considered by Corduneanu [2], for
definiteness we shall assume $L(¥epsilon)>1/2$ . Consider the Cauchy problem for the
scalar differential equation
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$(¥mathrm{C}¥mathrm{P}_{1})$ $¥dot{y}=¥frac{yL(y)}{L(¥epsilon)}$ , $ y(1)=3¥epsilon$

whose solution satisfies

$¥int_{3¥epsilon}^{y(t)}¥frac{dy}{yL(y)}=¥frac{t-1}{L(¥epsilon)}$ .

Setting $[¥Delta L(¥epsilon)]=$ the smallest integer not smaller than $¥Delta L(¥epsilon)$ , in particular we
have

$¥int_{3¥mathrm{e}}^{y(2[¥Delta L(¥epsilon)])}¥frac{dy}{yL(y)}=¥frac{2[¥Delta L(¥epsilon)]-1}{L(¥epsilon)}$

Since the right hand side ramains bounded as $¥epsilon$ decreases, condition (3) implies
that $y(2 [¥Delta L(¥mathrm{e})])¥rightarrow 0$ as $¥mathrm{e}¥rightarrow 0$ .

Let $¥{¥eta_{n}¥}$ he a sequence of positive real numbers such that $¥eta_{n}¥downarrow 0$ . Let
$¥epsilon_{1}<¥eta_{1}/3$ be so small that setting $¥epsilon=¥epsilon_{1}$ in $(¥mathrm{C}¥mathrm{P}_{1})$ , for the corresponding solution
we have $y(2[¥Delta L(¥epsilon_{1})])<1/2¥eta_{1}$ . Let $¥xi>0$ (but $¥xi<¥min¥{1$ , $¥epsilon_{1}¥}$ ) be so small that
the solution of

$(¥mathrm{C}¥mathrm{P}_{2})$ $¥dot{y}=¥frac{yL(y)}{L(¥epsilon_{1})}+¥xi$, $y(1)=3¥epsilon_{1}$

lies on $[1, 2[¥Delta L(¥epsilon_{1})]]$ within an $(1/2 ¥eta_{1})$ -ball about the previously chosen solu-
tion of $(¥mathrm{C}¥mathrm{P}_{1})$ .

Set $¥theta=¥Delta/2[¥Delta L(¥mathrm{e}_{1})]$ . Set also $C^{*}Q(I)$ to be the subset of $C_{Q}(I)$ consisting
of those functions that are lipschitzean with Lipschitz constant $K$. Let $¥ovalbox{¥tt¥small REJECT}_{1}$ be
the closed and convex subset of $C_{Q}[0, ¥delta]$ consisting of the restrictions to $[0, ¥delta]$

of the functions of $C^{*}¥dot{Q}(I)$ and call $T_{1}:¥ovalbox{¥tt¥small REJECT}_{1}¥rightarrow¥ovalbox{¥tt¥small REJECT}_{1}$ the operator $T$ considered as
acting on $[0, ¥delta]$ . Let $s¥subset¥ovalbox{¥tt¥small REJECT}_{1}$ be any set such that $¥alpha(S)¥geqq¥epsilon_{1}$ . Then

$¥alpha(T_{1}(S))¥leqq¥delta L(¥alpha(S))¥alpha(S)¥leqq¥grave{¥mathit{0}}L(¥epsilon_{1})¥alpha(S)¥leqq¥frac{1}{2}¥alpha(S)$

and by Lemma 2 there exists a closed and convex subset $M_{1}¥subset¥ovalbox{¥tt¥small REJECT}_{1}$ , mapped
into itself by $T_{1}$ and such that $¥alpha(M_{1})¥leqq¥epsilon_{1}$ .

We claim that we can define a family $¥{M_{i}¥}$ , $i=2$, $¥cdots$ , $¥Delta/¥delta$ , with the following
properties:

a) $M_{i}$ is a closed and convex subset of $C^{*}Q[0, i¥delta]$ , mapped into itself by
$T_{i}$ , where $T_{i}$ is $T$ considered on $C_{Q}[0, i¥delta]$ .

b) Set $¥alpha_{i}=¥max$ $¥{¥alpha(M_{i}), ¥epsilon_{1}¥}$ and $L_{i}=L(¥alpha_{i})$ . Then

$¥alpha(M_{i})-¥alpha_{i-1}¥leqq 2¥delta¥alpha_{i-1}L_{i-1}+¥xi$ .

In fact, having defined $M_{i}$ that satisfies a) and $¥mathrm{b}$), first set $¥ovalbox{¥tt¥small REJECT}_{i+1}$ to be
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the subset of $C_{Q}^{*}[0, (i+1)¥delta]$ consisting of those functions whose restriction to
$[0, i¥delta]$ belong to $M_{i}$ . Then $¥ovalbox{¥tt¥small REJECT}_{i+1}$ is closed and convex. Let $S$ be any subset
of $¥ovalbox{¥tt¥small REJECT}_{i+1}$ and let us evaluate $¥mathrm{o}¥mathrm{e}(T(S)(t))$ for $t¥in[0, (i+1)¥dot{o}]$ . Since $ T_{i}(M_{i})¥subset$

$M_{i}$ , $¥sup$ $¥{¥alpha(T(S)(t)):t¥in[0, i¥delta]¥}¥leqq¥alpha(M_{i})$ . For $t¥in[i¥delta, (i+1)¥delta]$ , the function
$T_{i+1}(x)(t)$ can be rewritten as

$T_{i+1}(x)(t)=T_{i}(x)(i¥delta)+¥int_{i¥delta}^{t}f(s, x(s))ds$ .

Since $¥alpha(A+B)¥leqq¥alpha(A)+¥alpha(B)$ , applying Lemma 1 and taking into account the
monotonicity of $¥epsilon L(¥epsilon)$ , we have:

(5) $¥alpha(T_{i+1}(S)(t))¥leqq¥alpha(T_{i}(S)(i¥delta))+¥delta L(¥alpha(S))¥alpha(S)$

$¥leqq¥alpha(M_{i})+¥delta L(¥alpha(S))¥alpha(S)$

Set $¥alpha_{l}^{¥prime}=¥alpha_{i}(1-¥delta L_{i})^{-1}$ . Then the following identity can be checked:

$¥alpha(S)(¥alpha_{i}^{rr}+¥delta L_{i}¥xi)(¥alpha i+¥xi)^{-1}$

$=¥alpha_{i}+¥delta L_{i}¥alpha(S)+¥alpha_{i}^{¥prime}(¥alpha(S)-¥alpha_{i}^{r,;}-¥xi)(1-oL_{i})(¥alpha i+¥xi)^{-1}$ .

Let us apply (5) to any $S¥subset¥ovalbox{¥tt¥small REJECT}_{i+1}$ such that $¥alpha(S)¥geqq¥alpha i’+¥xi$ . Then

$¥alpha(T_{i+1}(S))¥leqq¥alpha_{i}+¥delta L_{i}¥alpha(S)+¥alpha i’(¥alpha(S)-¥alpha_{l}^{¥prime}-¥xi)(1-¥delta L_{i})(¥alpha_{l}^{¥prime}+¥xi)^{-1}$,

since the added term in the right hand side is non negative. By the preceding
identity,

$¥alpha(T_{i+1}(S))¥leqq¥alpha(S)((¥mathrm{a}¥prime irir+¥delta L_{i}¥xi)(¥alpha+¥xi)^{-1})$

Since $¥xi$ is positive and $o‘‘ L_{i}¥leqq 1/2$ , the coefficient of $¥alpha(S)$ in the above inequality
is $<1$ . Therefore, applying Lemma 2 to the operator $T_{i+1}$ and to the set $¥mathit{9}¥Lambda_{i+1}$ ,

we infer the existence of a closed and convex subset of $¥ovalbox{¥tt¥small REJECT}_{i+1}$ , say $M_{i+1}$ ,

mapped into itself by $T_{i+1}$ , and such that
$¥alpha(M_{i+1})¥leqq¥alpha_{i}(1-¥delta L_{i})^{-1}+¥xi$ .

This last inequality can be rewritten as
$¥alpha(M_{i+1})-¥alpha_{i}¥leqq¥delta L_{i}(1-¥delta L_{i})^{-1}¥alpha_{i}+¥xi$

and finally
$¥alpha(M_{i+1})-¥alpha_{i}¥leqq 2¥delta L_{i}¥alpha_{i}+¥xi$.

Therefore $M_{i+1}$ satisfies both a) and $¥mathrm{b}$ ). We are interested in the properties of
of $M_{n}$ , were $n=¥Delta/¥delta=2$ $[¥Delta L(¥epsilon_{1})]$ . $M_{n}$ is a subset of $C_{Q}(I)$ and we claim that
$¥alpha(M_{n})¥leqq¥eta_{1}$ . Consider those $i$ such that $¥alpha_{i}=¥epsilon_{1}$ ( $1$ is one such f) and let $j$ be
their maximum. Then either $j¥geqq n-1$ , so that $¥alpha(M_{n})¥leqq 2¥epsilon_{1}+¥xi<3¥epsilon_{1}¥leqq¥eta_{1}$ , or else
$j<n-1$. In this is the case, $¥epsilon_{1}<¥alpha(M_{j+1})¥leqq 3¥epsilon_{1}$ and

$¥alpha(M_{s+1})-¥alpha(M_{s})¥leqq 2¥delta¥alpha(M_{s})L(¥alpha(M_{s}))+¥xi$ , $s¥geqq j+1$ .
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Then $¥alpha(M_{n})$ is dominated by the maximal solution of

$¥alpha(M_{s+1})-¥alpha(M_{s})¥leqq 2¥delta¥alpha(M_{s})L(¥alpha(M_{s}))+¥xi$, $¥alpha(M_{j+1})¥leqq 3e_{1}$

or, with the obvious meaning of the symbols, by the maximal solution of

$ y(s+1)-y(s)¥leqq 2¥delta y(s)L(y(s))+¥xi$, $y(j+1)¥leqq 3¥epsilon_{1}$ .

The function $y$ , defined on the integers, can be extended linearly to every

interval $[s, s+1]$ . Then (by the monotonicity of $yL(y)$ ), $y$ satisfies the differential
inequality

$ D_{+}y¥leqq 2¥delta f?L(y)+¥xi$, $y(j+1)¥leqq 3¥epsilon_{1}$

where $D_{+}$ denotes the right derivative. By Theorem 4. 1 of [5], it is dominated
by the solution of $(¥mathrm{C}¥mathrm{P}_{2})¥mathrm{i}.¥mathrm{e}$ . $¥alpha(M_{n})¥leqq¥eta_{1}$ .

Setting $C^{*1}.Q=M_{n}$ , we see that, starting from $C^{*}¥dot{Q}$ , we have found a closed

and convex subset of $C’’$ , namely $C_{Q}^{*1}$ , mapped into itself by $T$, such that
$¥alpha(C^{*1}Q)¥leqq¥eta_{1}$ . Since the only properties of $C_{¥dot{Q}}^{*}$ used were that $C^{*}Q$ is equicon-
tinuous, closed and convex, and mapped into itself by $T$, and these properties

are all shared by $C_{Q}^{*1}$ , this procedure can be applied again to yield existence of
$C^{*2}¥dot{Q}$, a subset of $C_{Q}^{*1}$ , such that $¥alpha(C_{Q}^{*2})¥leqq¥eta_{2}$ . By iterating we obtain a nested

sequence $¥{C^{*i}Q¥}$ of closed and convex subsets of $C^{*}Q(I)$ such that $¥alpha(C^{*i}Q)¥leqq¥eta i¥downarrow 0$.

It follows then that their intersection is a non-empty compact and convex
set mapped into itself by $T$. As in Darbo [3], the proof of the existence of a
fixed point of tlle continuous mapping $T$ is concluded by applying Schauder’s
Theorem to this intersection.

Remark. By our proof, every fixed point of $T$ on $C^{*}Q(I)$ is contained in

the compact set $¥cap C_{¥dot{Q}}^{¥backslash xi}$. Since every possible solution of (CP) is contained in
$C^{*^{¥wedge}}Q(I)$ , it is contained in $¥cap C_{Q}^{*i}$ . The continuity of $T$ implies that the set of
solutions of (CP) is closed and from the above it follows that it is actually
compact in $C(I)$ . However there are, in the infinite dimensional case, con-

tinuous $f$ such that the set of solutions of (CP) is not compact. In $l^{¥infty}$ set
$x=(x_{1}, x_{2^{ }},¥cdots)$ and consider the mapping $f:x¥rightarrow 2(x/||x_{¥mathrm{I}}^{1}|^{1/2})$ , $x¥neq 0$ and $f(0)=0$

and the Cauchy problem with $x(0)=0$ . Then the functions $x_{1}(t)=(t^{2},0,0, ¥cdots)$ ,
$¥ldots$ , $x_{n}(t)=(0, ¥cdots, t^{2},0, ¥cdots)$ are, on any interval $[0, h]$ , solutions of the given pro-

blem, and it is rather simple to see that such a set of functions is not precom-

pact in the Banach space of continuous function from $[0, h]$ into $l^{¥infty}$ . Therefore
is does not seem likely that existence of solutions for a mapping $f$ like the
above (that does not satisfy the conditions or our Theorem 3) could be proved
by a method, like ours, that eventually ends up in applying a fixed point
theorem over a compact set.
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