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On the Existence of Solutions of

Ordinary Differential Equations in Banach Spaces

By Arrigo CeLLina

(Florence University)

We consider the Cauchy problem
dx
(cP) = 2@), 3(0)=x,

where f:NXV—E is continuous, N is a neighborhood of 0 in the real line, E
is an infinite dimensional Banach space with norm ||-]|, VCE is an open set
containing #°. Then there exist a closed set Q:||x—x%|<b and an interval [0, a]
such that f is bounded (i.e.||f]|£K) on [0,alXQ. Set d=min {a, b/K} and

I=[0,4]. We are interested in proving the existence of a solution of (CP)
/ defined on I.

Let C(I) be the normed linear space of continuous functions on I with the
usual supremum norm (here denoted by |||-||) and Co(I)cC(I) be the subset
of those functions with values in Q. We are going to show the existence of
a fixed point of the operator T: Co(I) —Co(I) defined by

. t '
(1) T () =2+ fo £s, 2(s))ds

It is known [5] that such a fixed point would be a (strongly) differentiable
function satisfying (CP).

Let us first remark that T is a continuous mapping from Cgo(l) into itself.
In fact let %/, x, belong to Co(I) and let x,—x’. Since f(s, x,(s)) converges
to f(s,x’(s)) pointwise, in view of the extension to integrals of vector-valued
functions of the Lebesgue Dominated Convergence Theorem [6], for every t&1,
Tx,(&) — Tx'(t). The set of functions {Tx,} is equicontinuous and this fact
implies [4] that |||Tx,— Tx'|||—0.

In what follows we shall make use of the index « introduced by Kuratowski
[1]. For the properties of this index we refer to [1],[3] and [8]. We shall
repeatedly make use of the following generalization of the Ascoli-Arzela Theorem
due to Ambrosetti [1]:

Theorem 1. Let HCC(I) be bounded and equicontinuous and set H(2)=
{u=u@): u(-)eH}. Then

a(H)=sup {a(H()): tel}.
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About the existence of solutions of (CP) the following result is known
(Szufla [87):

Theorem 2. Let I=[0,al, E a real Banach space and Q= {x<E: ||x —x|
<by. If f: IXQ—E is a continuous mapping such that a(f(IXS))=Zka(S)
for any subset S of Q, where k is a constant, then (CP) admits at least one
solution defined on [0, h] where h=<min(a,b/K), hk<l and K=sup {||f{; ©)|}:
(¢, 2)elXq}.

Szufla’s theorem strengthenes an analogous result of Ambrosetti in the sense
that it requires the continuity of f instead of the wniform continuity as in [1].

Let us introduce the function L: R*— R* defined by

L(e) =sup {a(fIXS))/a(S)}

the supremum being taken over all subsets SCQ such that a(S)=e. It is clear
that L(e) increases as ¢ decreases and it is not difficult to see that L(e) is
continuous. Moreover we have that

(2 a(f(IXS))<eL(ed

for every Sc@Q such that @(S)<e. In fact (2) certainly holds if a(S)=e. Let
a(S)<e, and choose S°CQ such that a(SY=e. Then ' '
a(fIXS)) Sa(f(IX(SVSD))=eL(e).

A third claim about L(e) is that eL(e) is monotonic non decreasing. In fact
assume that there exist ¢’ and &’’: &’<e/’ such that &'L(e')=e¢/’L(e/")+&, £>0.
In particular then, L(e/)<L(e")—£&/e’’. Set #=¢&/2¢’/. There exists S:a(S)>=¢’
such that a(f(IXS))(@(S))t=L(E)—7. Then «a(S)<e¢', otherwise L(&’")
would be not less than L(¢’)—%. By (2), e”’L(e/)=a(f(IXS))=a(S)(L("
—M)=e’'L(e')—Me'"=¢'L(e’)—£[2, contradicting the assumption.

We notice that these last properties of L depend on the possibility of choos-
ing subsets of Q having preassigned (sufficiently small) @. In our case this is
allowed by the convexity of Q.

Finally let us remark that L(¢) is=0 when f is a compact mapping and it is
bounded by some constant when f is a-lipschitzean. Our theorem 3 below yields
existence of solution of (CP) under a condition on L(g) that can be considered
as an analogue of the Osgood uniqueness condition. In particular, this condi-
tion allows L(e) to diverge as Log(l/e), as e tends to zero. More precisely

we have

Theorem 3. Let f be a?eﬁned and continuous as before. Assume that

de
3 ﬁ eL(e)
Then (CP) admits at least one solution defined on [0, 4].
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For its proof we shall need the two following Lemmata. The first Lemma
establishes a relation between the a-properties of f and those of the integral
operator defined by (1). We use the notation B[A,d] for a J-ball about A

and co{A} for the closed convex hull of A. Moreover when S is a family of
mappings, S(z) denotes its section at ¢, i.e. S@)={x(@): x(-)&S} and when I
is an interval, S(D={x@): 2(-)&S and t=I}.
Lemma 1. Let I=[0,4] and ScCq(I) be any equicontinuous family of
mappings. Set N=sup {«(S@)):t=I}. Then '
a(T(S))Z4L().
Proof. We are going to show that for every &£>0,
a(T(S))<AL(MN+¢

Set 6’=§/4K. We claim that it is enough to prove that for some partition
0=t,<t,<--- <2y, =4 such that sup (¢;+1—¢;) <é’, for i=0,1,---,m,
(1) (TS @S AL+
In fact if (4) holds, given any t&[t;, 2.1,
T(S) O CBITS) 1), K1=B| TS) (), =]
1.e.
(T(S)D) Sa(T(S)ED)+5 <AL+,

But then, since the family T'(S) is equicontinuous, from Theorem 1 it follows
that «(T(S))<4L(M7+E.

Let 7>7 be such that #L(W")Z7L(M)+£&/34. The equicontinuity of S
implies that there exists a ¢’”/>0 such that from #,¢/<I and |t/—¢'/| <6 it
follows that {lx(#/) ~x (@ DI|S(@'—71)/2 for every x&S. Let m be a positive inte-
ger such that 4/m<min[§’,6””], and take a partition of I into m subintervals
of length 4/m by the points ¢t;=id/m. Since

FAXS(Dts, 10D FAXBLS G, 5 =)

then
a(co{fUIXS(t;, 2 DID) =a(FUX S, 2 DN W L) 7LD +3—§A—.
For each 7, cover co{f(IXS([t,%i+11))} by a finite number of sets Fijij=
1,2,---,v(Z), having diameter not larger than 7L(®)+&/24. Consider the
v(O)y(1)---v(m—1) subsets of C(I): C(5(0),j), -, j(m—1)), where y=C(j(0),
j), -+, jm—=1)) if y is picewise linear, y(0)=x°, ¥’ (¢) is constant on #;<t<tj
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and y'€F; ji there. Each C(j(0),j(), -, j(m—1)) is an equicontinuous family
of functions and the diameter of its section at #=¢; is not larger than id/m
LD +ER2DH<AML(M)+E/2. It is now simple to see that for each 7, the
section of T'(S) at t=¢; is covered by the union of the sections at z=#; of the
C(j(0),j(1), -, jim—1)). In fact let x&S: by the mean value theorem,

4 m=1_ 4
0 — 0 .
x -}-/; fis,x(s))ds=x +i§)C,m

where {;Sco{f(s, 2(s)):;<s<t;,4}, i.e. €:€F;, ;i for some choice of the j(3).
The continuous and picewise linear function y such that y(0)=xz° and %' (&) =¢;
on ;<t<t;4; belongs to C(j(0),j(1), -, j(m—1)) and agrees with 7'(x) at every
t;. Therefore the section of T(S) at each #; is covered by the (finite) union
of the sections of the C(5(0),j(1), ,j(m—1)) so that its « is not larger than
AnL(7)+£/2. By our previous claim the Lemma is proved.

In particular, when f is a-lipschitzean of modulus %, T' is a-lipschitzean
(on equicontinuous sets) of modulus 24. A result of this kind was established
by Ambrosetti [1] under the hypothesis of uniform continuity of f.

The following Lemma was essentially proved in [3].

Lemma 2. Let Gl be a closed, bounded and convexr subset of a Banach
space X and T: Y — G be continuous and such tha: for some >0 there exists
a constant h<1 such that a(T(S))Zha(S) for every SC G such that a(S)=e.
Then there exists a closed and convex subset MC Y such that T(M)CM and
a(M)<e. Moreover, M contains the (possibly empty) set of jfixed points of T
on .

Proof of Theorem 3. Roughly speaking, the proof goes as follows: fixing
7>0 we see that by taking ¢ sufficiently small (say 6<(2L(7))™Y), in view of
Lemma 1, the operator 7T considered on [0,6] acts as an a-contraction on any
equicontinuous subset S of C[0,d], such that a(S)=7. Applying Lemma 2,
we infer the existence of a subset of C[0,d], mapped into itself by 7T, whose
@« is not greater than 7. If we wish to apply this process again, in order to
have a nested sequence of sets whose a’s go to zero, we face the problem that
the interval [0,8] (in general) tends to zero with 7. Since we need to have
sets of functions defined on a constant interval, say [0,4], the problem then
becomes that of showing the existence of a subset of C[0,4], mapped into
itself by T, whose « goes to zero with 7. For a fixed %, the construction of
such a set is carried by subdividing the inteval [0, 4] into a number of sub-
intervals and by applying Lemma 2 to each of them.

Since the case L(e)=0 has been already considered by Corduneanu [2], for

definiteness we shall assume L(e)>1/2. Consider the Cauchy problem for the
scalar differential equation
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(CPY y=LED

L@ y(1) =3¢

whose solution satisfies

/y(f) dy  t—1

e yL(y) L

Setting [4L(e)]=the smallest integer not smaller than 4L(¢), in particular we
have

yQULED dy _ 2[4L(e)]—~1
Ls yL(y) L
Since the right hand side ramains bounded as e decreases, condition (3) implies
that yQ2[4L()])—0 as e—0.
Let {7,} be a sequence of positive real numbers such that 7, } 0. Let
£,<7;/3 be so small that setting e=e¢, in (CP,), for the corresponding solution

we have y(2[4L(e))1)<1/2m,. Let £>0 (but £€<min {1,e;}) be so small that
the solution of

. yL(@ —
(CP» V=T +§&, y(1) =3¢

lies on [1,2[4L(e;)]] within an (1/2 7,)-ball about the previously chosen solu-
tion of (CP,).

Set §=4/2[4L(e;)]. Set also C5(I) to be the subset of Co(I) consisting
of those functions that are lipschitzean with Lipschitz constant K. Let .9, be
the closed and convex subset of Cg[0,8] consisting of the restrictions to [0, 8]
of the functions of C5(I) and call T,: — H; the operator T considered as
acting on [0,d]. Let SC 9%, be any set such that «(S)=¢,. Then

a(Ty(S)) <6L(@(S))a(S) §5L<e1>a<5>%a<5>

and by Lemma 2 there exists a closed and convex subset M;c.9{;, mapped
into itself by T, and such that a(M,) <Ze,.

We claim that we can define a family {M;},i=2, ---, 4/8, with the following
properties:

a) M; is a closed and convex subset of C3[0,:5], mapped into itself by
T;, where T; is T considered on Cg[0,:d].
b) Set a;j=max {a(M;),e;} and L;=L(«;). Then

a(M;) —a; 1 <20a; L;_,+£.

In fact, having defined M; that satisfies a) and b), first set ;.1 to be
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the subset of CJ[0, (i4+1)8] consisting of those functions whose restriction to
[0,i67 belong to M;. Then ;. is closed and convex. Let S be any subset
of Miv1 and let us evaluate a(T(S)(@)) for t<[0, (:+1)¢]. Since T;(M;)C
M;, supia(T(S)®)):t<[0,i0]} La(M;). For t=[id, (i+1)6], the function
T;1(x)() can be rewritten as

Ti1 () (&) = Ti(x) (@0) + j: : F (s, 2(s))ds.

Since a(A+B)Za(A)+a(B), applying Lemma 1 and taking into account the
monotonicity of eL(e), we have:

(5) a(Ti1(S) () =a(Ti(S) (@0)) + 6 L(a(S))alS)
Sa(M)+L(a(S))a(S)

Set af=a;(1—8L;)~'. Then the following identity can be checked:

a(S)(af+8L;&) (al+86)1
=a;+8L;ia(S)+ai(a(S) —ai—§) A —3L) (ai+&).

Let us apply (5) to any SC i+ such that a(S)=al+£ Then
a(T:41(S)) Sa;+06Lia(S) +ai(a(S) —ai—&) (1—6L) (af+ 57,

since the added term in the right hand side is non negative. By the preceding
identity,

a(Ti(S) =al(S) ((ai 4L (@i +6)™Y

Since £ is positive and dL;=1/2, the coefficient of a(S) in the above inequality
is <1. Therefore, applying Lemma 2 to the operator 7,; and to the set Wi+,
we infer the existence of a closed and convex subset of Wiv1, say M.,

mapped into itself by 7., and such that

a(M;) sa;(1—-0L)™1+£.
This last inequality can be rewritten as

a(M; ) —a;<8L;(1—0L;) 'a;+ £

and finally

a(M;yy) —a; <20 L;c;+&.
Therefore M;,, satisfies both a) and b). We are interested in the properties of
of M,, were n=4/6=2[4L(e;)]. M, is a subset of Co(I) and we claim that
a(M,)=<7,. Consider those i such that a;=¢e, (1 is one such ¢) and let j be

their maximum. Then either j=n—1, so that a(M,)<2e+£<3e,<7,, or else
j<n—1. In this is the case, g;<a(M;,,)<3e, and

a(Ms.) —a(My) <28a(M)L(a(MD)+§, szj+1.
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Then a(M,) is dominated by the maximal solution of
a(Msi) —a(M) £20a(M)L(a(M))+§, a(M; ) <3¢
or, with the obvious meaning of the symbols, by the maximal solution of
yG+D—y() =20y Ly () +E, y(G+1)=3es

The function y, defined on the integers, can be extended linearly to every

interval [s, s+1]. Then (by the monotonicity of yL(¥)), y satisfies the differential
inequality

D,y=20yL(y)+¢, y(j+1)=3g

where D, denotes the right derivative. By Theorem 4.1 of [5], it is dominated
by the solution of (CP,) i.e. a(M,)=<7;.

Setting C&'=M,,, we see that, starting from C5, we have found a closed
and convex subset of Co, namely C&', mapped into itself by 7, such that
a(CZk)I)ém. Since the only properties of Co used were that Cb is equicon-
tinuous, closed and convex, and mapped into itself by 7', and these properties
are all shared by C&', this procedure can be applied again to yield existence of
C&, a subset of C&', such that a(C&)<7,. By iterating we obtain a nested
sequence {Céi} of clesed and convex subsets of C5(I) such that a(CZ'Ei) <7; 0.

It follows then that their intersection is a non-empty compact and convex
set mapped into itself by T. As in Darbo [3], the proof of the existence of a
fixed point of the continuous mapping T is concluded by applying Schauder’s
Theorem to this intersection.

Remark. By our proof, every fixed point of T on CH(I) is contained in
the compact set r\CZoi. Since every possible solution of (CP) is contained in
Co(D), it is contained in r\CZ;i. The continuity of T implies that the set of
solutions of (CP) is closed and from the above it follows that it is actually
compact in C(I). However there are, in the infinite dimensional case, con-
tinuous f such that the set of solutions of (CP) is not compact. In [® set
x=(x1,x2,~-‘) and consider the mapping f: x—2(x/||x]|'?), %30 and f(0)=0
and the Cauchy problem with x(0)=0. Then the functions x,(#)=(30,0, ),
e, 2,(&)=(0,---,£2,0, ---) are, on any interval [0, 4], solutions of the given pro-
blem, and it is rather simple to see that such a set of functions is not precom-
pact in the Banach space of continuous function from [0, 2] into . Therefore
is does not seem likely that existence of solutions for a mapping f like the
above (that does not satisfy the conditions or our Theorem 3) could be proved

by a method, like ours, that eventually ends up in applying a fixed point
theorem over a compact set.
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