A Supplement to the Paper "On a Compact Invariant Set Isolated from Minimal Sets"

By Tosiya SAITO

(University of Tokyo and University of Warwick)

1. The following theorem is an easy consequence of Theorem 2 of [1].

Theorem 1. If F is stable and ∂F contains a point not belonging to any minimal sets, then ∂F contains at least one saddle minimal set.

Here F denotes, as in [1], a non-empty, compact and non-open invariant. set isolated from minimal sets.

As an immediate corollary of the theorem, we get:

Corollary. If F is positively stable and non-dense, every minimal set in F is either positively stable or a saddle set.

2. The following theorem gives a slight improvement of Ura's criterion of stability.

Theorem 2. Let M be a compact invariant set (not necessarily isolated from minimal sets). Then M is positively stable if and only if $D^+(K) \subset M$ for every minimal set K in ∂M .

Proof. Necessity is obvious since the stability of M implies $D^+(M) = M$ (Ura's criterion). Conversely suppose that $D^+(K) \subset M$ for every minimal set K in ∂M . To prove that M is stable, it is sufficient to show that $x \notin M$ implies $D^-(x) \cap M = \phi$.

Suppose that there exists $x \notin M$ such that $D^-(x) \cap M \neq \phi$. Evidently $D^-(x) \cap M = D^-(x) \cap \partial M$ since $x \notin M$ and M is compact and invariant. Also, as ∂M^- is compact and invariant, $D^-(x) \cap \partial M = J^-(x) \partial M$ and hence $D^-(x) \cap \partial M$ is also a compact invariant set. Let K be a minimal set in $D^-(x) \cap \partial M$. Then if $y \in K \subset D^-(x) \cap \partial M$, we have $x \in D^+(y) \subset D^+(K)$ which contradicts $D^+(K) \subset M$.

3. Let M be a compact invariant set (not necessarily isolated from minimal sets). Let $S^+(M)$ be the smallest positively stable compact invariant set containing M, and $\Sigma^+(M)$ the smallest positively asymptotically stable compact invariant set containing M. (Of course, $S^+(M)$ or $\Sigma^+(M)$ may not exist.)

The following theorem is an immediate consequence of Theorem 2 above and Theorem 5 of [1].

Theorem 3. If:

1) $D^+(M)$ is compact,

T. Saito

2) for every minimal set K in $\partial D^+(M)$, $D^+(K) \subset D^+(M)$, then $S^+(M) = D^+(M)$.

If we further assume that:

3) $D^+(M)$ is isolated from minimal sets,

then $\sum^{+}(M) = S^{+}(M) = D^{+}(M)$.

Conversely, $S^+(M) = D^+(M)$ implies 1) and 2), and $\Sigma^+(M) = S^+(M) = D^+(M)$ implies 1), 2) and 3).

Corollary. If:

1) $D^+(M)$ is compact,

2) $\partial D^+(M) \setminus M$ contains no minimal sets,

then $S^+(M) = D^+(M)$.

4. It is well known that if M is a weak attractor, $\sum^{+}(M) = S^{+}(M) = D^{+}(M)$ (cf. [2]). Therefore, if M is a weak attractor, it must satisfy 1), 2) and 3) of Theorem 3. The situation will be made clear by the following theorem.

Theorem 4. A compact invariant set M is a positive weak attractor if and only if:

1) $D^+(M)$ is compact,

2) $D^+(M) - M$ contains no minimal sets,

3) $D^+(M)$ is isolated from minimal sets.

Proof. Suppose that M is a weak attractor. Then it is known that $D^+(M)$ is compact and the region of weak attraction of M:

$$a^+(M) = [x; L^+(x) \cap M \neq \phi]$$

is a neighbourhood of $D^+(M)$. So we have only to show that $a^+(M)-M$ contains no minimal sets. But this is obvious from the definition of $a^+(M)$.

Conversely suppose that 1), 2) and 3) are satisfied. Then there exists a relatively compact neighbourhood U of $D^+(M)$ such that $\overline{U}-M$ contains no minimal sets. We shall show that if V is a sufficiently small neighbourhood of M, we have $\pi(x, t) \in U$ for any $x \in V$ and any t > 0.

If we assume the contrary, there exists $\{x_n\} \subset U-M$ such that $x_n \to x \in M$ and

$\pi(x_n,t_n)\in\partial U$

for some $t_n > 0$. Then, ∂U being compact, $\{\pi(x_n, t_n)\}$ has a cluster point $y \in \partial U$. Then $y \in D^+(x) \subset D^+(M)$ and hence $D^+(M) \cap \partial U \neq \phi$. This is, however, a contradiction since U is a neighbourhood of $D^+(M)$.

Therefore, if V is sufficiently small, we have $\pi(x,t) \in U$ for any $x \in V$ and any t>0. Hence we have $L^+(x) \subset \overline{U}$. But as $\overline{U}-M$ contains no minimal sets by assumption, this implies $L^+(x) \cap M \neq \phi$. Thus we have

$$a^+(M) \supset V$$

A Supplement to the Paper "On a Compact Invariant Set Isolated from Minimal Sets" 129

and M is a positive weak attractor.

References

- T. Saito, On a compact invariant set isolated from minimal sets, Funkcial. Ekvac.
 12 (1969), 39-49.
- [2] N. P. Bhatia, Weak attractors in dynamical systems, Bol. [Soc. Mat. Mexicana, 11 (1966), 56-64.

(Ricevita la 11-an de majo, 1970)