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1. Introduction.
In this paper we study the trajectory structure in a (relatively compact)

neighbourhood of a closed set which is invariant and positively unstable under
a flow on a metric space. For an understanding of this and the rest of the
introduction it is sufficient for the reader to have in mind as an example of an
abstract flow a system of first order, autonomous, ordinary differential equations
describing mathematically a time-independent physical system; in short, a dy-
namical system. In a flow a set $M$ is invariant if it is a union of trajectories
and positively unstable if the trajectories through certain points arbitrarily close
to $M$ leave a particular neighbourhood of $M$ in the future. Throughout this
introduction we consider a closed set $M$, having a neighbourhood with compact
closure and which is invariant and positively unstable under the flow. The
instability of such a set is characterized by the existence of certain closed sets
which are negatively invariant ( $¥mathrm{i}.¥mathrm{e}$ . the unions of negative semi-trajectories)
and which intersect both $M$ and its complement. These sets are here called
positive prolongation elements from $M$. Ura [12] has considered very similar,
if larger, sets but he does not study the trajectory structure on them in the
same manner as we do here. A preliminary study of prolongation elements,
sufficient for later needs, is made in Section 3. This study is deepened in Sec-
tion 4, which contains the main results of the paper. The section itself falls
naturally into two parts, now outlined in turn.

We are able to show in Theorem 1 the existence of a negative semi-
trajectory $¥gamma-$ on any positive prolongation element and in any neighbourhood of
$M$. This result is not entirely new. In a somewhat different, if allied, context
Ura and Kimura [13] have proved essentially the same. The analysis continues
with a study of the negative limit set $L^{-}$ of the semi-trajectory $¥gamma-$ . The nega-

tive limit set of a trajectory is the set of states ( $¥mathrm{i}.¥mathrm{e}$ . points of the phase space)
approached infinitely often and far into the past. In Theorem 2 it is shown
that $L^{-}$ either is a non-dense minimal set in $M$ or contains a non-dense, mini-
mal, saddle set. In a flow a set is minimal if it is closed, invariant and irre-
ducible with respect to these properties. A saddle set is a set strongly unstable
by virtue of the fact that the trajectories through certain points arbitrarily close
to it leave a particular neighbourhood of it both in the past and in the future.
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From Theorem 2 it is possible to make deductions (Theorems 3, 4, 5) general-
izing results of Ura and Bass as we explain below. Most importantly in our
Theorem 4 we show that either some point outside $M$ has its negative limit set

intersecting $M$ or there is outside $M$ on any $¥dot{¥mathrm{p}}$ositive prolongation element and
in any neighbourhood of $M$ a non-dense, minimal, saddle set.

Unstable invariant sets have been studied in the past by authors, notably
Bass, Ura and Zubov, seeking to characterize stability, or equivalently insta-
bility. We now wish to outline roughly this work in relation to the first part

of Section 4 up to Theorem 5.
The definition of instability is in terms of the flow structure exterior to the

set. It is thus natural in seeking to characterize instability to turn one’s atten-

tion to the flow structure outside the set. In this regard

Zubov’s Proposition: A necessary and sufficient condition for the positive

instability of $M$ is that some point outside $M$ should have its negative limit set

.intersecting $M$,

is very appealing through its elegant use of limit sets, whose importance has
long been recognised in the study of flows, and because it is known to be
-true for an isolated singular point of a planar dynamical system. See, for
$,¥mathrm{e}¥mathrm{x}¥mathrm{a}¥mathrm{m}¥mathrm{p}¥mathrm{l}¥mathrm{e}$, Nemytskii and Stepanov ([8], $3_{¥sim}42$, p. 72). It should be noted that
in the literature Zubov’s proposition is usually quoted in the form of a criteri-
on ( $¥mathrm{i}.¥mathrm{e}$ . a necessary and sufficient condition) for stability rather than for insta-

bility. In the Russian original of his book ([14], Theorem 7) Zubov asserted
the validity of the proposition without restriction on the flow structure outside
$M$. Bass [1] and Mendelson observed, however, that the condition therein
is merely sufficient and not necessary for the positive instability of $M$. Ura
([12], §3, p. 257) has given counter-examples, including one of a non-isolated
singular point of a planar dynamical system and one of an isolated singular
point of a dynamical system in Euclidean 3-space.

The work of Bass [1] and much of the work of Ura in [12] have been
devoted to correcting Zubov’s proposition. This entails considering positively
unstable sets for which Zubov’s criterion fails and the analysis is best viewed
as showing that sets are of this type only when there is a particular flow struc-

ture outside them. Bass’ analysis produces an instability criterion ([1], Theorem
2) which Ura ([12], Theorem 2 $(10^{¥prime})$ , p. 284) has generalized. The details are
too complicated to give here. Besides the present author believes that Bass’
proof fails (thus jeopardising Ura’s generalization, although there are no details
of proof). In our Theorem 5 we give a correction which strengthens Bass’
result in certain respects while weakening it in another. Ura’s analysis ([12],

Theorem 2, p. 284) is more extensive and it is in fact possible to deduce our
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Theorem 4 from it.
The motivation of the present paper was to settle the
Conjecture: Either there is a point outside $M$ with its negative limit set con-

tained in $M$ or there is a minimal set outside of but in any neighbourhood of $M$.

The second part of Section 4 from Theorem 6 onwards, reports the progress
made towards proving this conjecture, in the absence of a counter-example.
In Theorem 6 the flow on that part of the limit set $L^{-}$ outside $M$ is analysed
using a result of Friedlander ([4], Theorem 9) but the details are too compli-
cated to give here. Certain deductions (Theorems 7, 8, 9) are then possible ;

most notably Theorem 8 in which we replace the second alternative of the con-
jecture by the following : there is on any positive prolongation element, in any
neighbourhood of but not wholly contained in $M$ a non-dense, negative limit
set which is also a saddle set. This considerably strengthens the only other
result in this direction to date, $¥mathrm{v}¥mathrm{i}¥mathrm{z}$ , that of Ura ([12], Theorem 3, p. 286),
which shows that if there is no point outside $M$ with its negative limit set

contained in $M$ there exists a closed, invariant set in any neighbourhood of but
not wholly contained in $M$.

In Section 5 we $¥mathrm{p}¥mathrm{r}¥mathrm{o}¥dot{¥mathrm{v}}¥mathrm{e}$ the conjecture proposed above for continuous flows
on a class of 2-manifolds which includes the Euclidean plane $R^{2}$ . This is poss-

ible because there is at one’s disposal for these flows a theory generalising the
classical results of Poincare and Bendixson in the qualitative study of planar
dynamical systems. For this theory we rely upon Hajek’s recent book [6].

The phase-spaces under consideration in this section are separated by Jordan
curves ( $¥mathrm{i}.¥mathrm{e}$ . homeomorphs of the 1-sphere $S^{1}$ ) in the same manner as the Euclid-
ean plane is. Since the Poincare-Bendixson theory is unlikely to generalize to

flows on spaces without this property the method here employed would appear
unfruitful for resolving the conjecture in general.

In the final section of the paper we digress from the main theme in order
to point out that there is a Lagrange stable semi-trajectory ( $¥mathrm{i}.¥mathrm{e}$ . a semi-trajectory

with compact closure) outside of but in any neighbourhood of a closed, non-

open, invariant set having a neighbourhood with compact closure. This is doubt-
less well known but to the author’s knowledge does not appear explicitly in the
literature except in the one special case of a singular point of a planar dynamical
system. See Sansone and Conti ([10], Theorem 26, p. 178). Indeed Mendelson
[7] has given a sufficient condition for the existence of such a semi-trajectory

near an isolated singular point of a dynamical system in Euclidean $¥mathrm{r}¥mathrm{c}$-space $R^{n}$ .

This condition is here proved superfluous.
We now turn to giving in the next section precise basic definitions and no-

tations.
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2. Basic definitions and notations.
In what follows $X$ is a metric space with metric $¥rho$ . If $M¥subseteq X$ and $N¥subseteq X,¥overline{M}$

dentoes the closure of $M$, $¥mathrm{d}¥mathrm{M}$ the boundary of $M$ and $N¥backslash M$ the complement of
$M$ in $N$. If $M¥subseteq X$ and $¥epsilon>0$ , $S(M, ¥epsilon)$ denotes the set $¥{x¥in X:¥rho(x, M)<¥epsilon¥}$ and
$S[M, ¥epsilon]$ its closure. If $M¥subseteq X$ and, for each $x¥in X$, $L(x)$ is a subset of $X$ then
$L(M)$ denotes the set $¥cup¥{L(x) : x¥in M¥}$ .

Let $x$ denote either the additive group $R$ of real numbers with the usual
topology or the additive group $Z$ of integers with the discrete topology and let
$¥pi$ be a continuous map from $X¥times x$ into $X$ such that for each $x¥in X$ and each
$s$ , $t¥in ¥mathrm{f}$

$¥pi(x, 0)=x$, $¥pi(¥pi(x, s), t)=¥pi(x, s+t)$ .

Then $(X, ¥mathrm{f}, ¥pi)$ is called a flow on $X$ and is said to be continuous or discrete
according as $x$ is $R$ or $Z$. For $x¥in X$ and $t¥in ¥mathrm{f}$ it is more convenient to write
$xt$ instead of $¥pi(x, t)$ if no confusion can arise. The so-called “identity” and
“homomorphism” properties of $¥pi$ may then be expressed:

$x0=x$, $(xs)t=x(s+t)$

for each $x¥in X$ and each $s$, $t¥in f$ .

Continuous flows arise naturally in the study of time-independent physical
systems which can be described in terms of a system of first order, autonomous,
ordinary differential equations satisfying certain conditions. Discrete flows de-
termine and are determined by homeomorphisms of $X$ onto itself. Apropos these
remarks see, for example, Gottschalk ([5], pp. $¥mathrm{S}(¥mathrm{M}, 338)$ .

An important property of flows is the so-called continuity with respect to

initial position : for any $x¥in X$, $¥tau>0$ and $¥epsilon>0$ there exists $¥delta>0$ such that $¥rho(xt$,
$ yt)<¥epsilon$ for all $y$ with $¥rho(x, y)<¥delta$ and all $t$ with $|t|¥leqq¥tau$ . For a proof in the con-

tinuous case see, for example, Nemytskii and Stepanov ([8], 2. 01, p. 327).
Suppose that as regards the flow $(X, ¥mathrm{f}, ¥pi)$ a meaning has been assigned,

arising from the ordering of $g$, to the locution $‘‘*$ is a positive $**$
” (or $‘‘*$ is positi-

vely $**’’$ ). Then we use the locution $‘‘*$ is a negative $**$
” to mean that $*$ is a

positive $**$ under the “time-reversed’’ flow $(X, Z, ¥mu)$ where $¥mu(x, t)=¥pi(x, -t)$

for each $x¥in X$ and each $t¥in x$ . Definitions and enunciation and proofs of theo-
rems are uaually given only in the positive form. Use is made as required,
however, of oppositely sensed variants. Notations are sensed by affixing to

them the appropriate $+$ or ? sign.
For $x¥in X$ the set $¥gamma(x)=¥{xt¥in X:t¥in x¥}$ is called the trajectory of $x$ and the

set $T^{+}(x)=¥{xt¥in¥gamma(x) : ¥tau¥geqq 0¥}$ is called the positive semi-trajectory of $x$ . A semi-
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trajectory (either positive or negative) is said to be Lagrange stable if it has
compact closure. For $x¥in X$ and $t_{1}$ , $t_{2}¥in x$ with $t_{1}<t_{2}$, the set $¥{xt¥in¥gamma(x) : t_{1}¥leqq t¥leqq t_{2}¥}$

is called the trajectory arc of $¥gamma(x)$ with end points $xt_{1}$ and $xt_{2}$ .

A non-void set $M¥subseteq X$ is said to be invariant if $¥gamma(M)=M$ and positively
invariant if $¥gamma+(M)=M$. A closed, invariant set is said to be minimal if it has
no proper, closed, invariant subset. A point $x¥in X$ is said to be a fixed (critical,
singular, rest or equilibrium) point if $¥{x¥}$ is invariant. A trajectory is called a
cycle if, topologically, it is a Jordan curve $¥mathrm{i}.¥mathrm{e}$ . if it is homeomorphic to the
1-sphere $S^{1}$ . Clearly both fixed points and cycles are minimal.

For $x¥in X$ the positive (or omega) limit set of $x$ , denoted $L^{+}(x)$ , is the set
of all points $y¥in X$ for which there exists a sequence $¥{t_{n}¥}$ in $q$ with $ t_{n}¥rightarrow+¥infty$

and $xt_{n}¥rightarrow y$ .

For $x¥in X$ the positive prolongation of $x$ , denoted $D^{+}(x)$ , is the set of all
points $y¥in X$ for which there exist sequences $¥{x_{n}¥}$ in $X$ and $¥{t_{¥hslash}¥}$ in $x$ with $x_{n}$

$¥rightarrow x$ , $t_{n}¥geqq 0$ for all $n$ and $x_{n}t_{n}¥rightarrow y$.
For $x¥in X$ the positive prolongational limit set of $x$, denoted $J^{+}(x)$ , is the set

of all points $y¥in X$ for which there exist sequences $¥{x_{n}¥}$ in $X$ and $¥{t_{n}¥}$ in $x$ with
$x_{n}¥rightarrow x$ , $ t_{n}¥rightarrow+¥infty$ and $x_{n}t_{n}¥rightarrow y$ .

A non-void set $M¥subseteq X$ is said to be positivdy stab& if for any $¥epsilon>0$ there
exists $¥delta>0$ such that $¥gamma+(S(M, ¥delta))¥subseteq S(M, ¥epsilon)$ . A set $M$ may be trivially stable
by virtue of the fact that there are no points of $X¥backslash M$ arbitrarily close to $M$.

If the set $M$ is closed and has a $¥mathrm{n}¥mathrm{e}¥mathrm{i}¥mathrm{g}¥mathrm{h}¥mathrm{b}¥mathrm{o}¥dot{¥mathrm{u}}$ rhood with compact closure, it is tri-
vially stable iff it is open. A non-void set $M¥subseteq X$ is said to be positively unstable
if it is not positively stable.

Let $¥mathrm{S}$ be a set of trajectory arcs and let $M¥subseteq X$. Then $M$ is called a saddle
set with respect to $¥mathrm{S}$ if there is a neighbourhood $U$ of $M$ such that any neighbour-
hood $V$ of $M$ intersects some member of $¥mathrm{S}$ with both end points outside $U$.

A set $M¥subseteq X$ is called a saddle set if it is a saddle set with respect to some set
of trajectory arcs. A set $M¥subseteq X$ is a saddle set iff there exists a neighbourhood
$U$ of $M$ such that any neighbourhood $V$ of $M$ contains a point $x$ such that
$¥gamma¥dagger(x)¥neq U$ and $¥gamma-(x)¥_(¥subset U$. This is in fact the definition of saddle set adopted by
Ura ([12], Definition 1, p. 277), who attributes the concept of P. Seibert. Saddle
sets are clearly unstable in both senses. When a positive limit set is also a
saddle set we shall call it a positive saddle limit set, A fixed point which is also
a saddle set shall be called a saddle fixed point.

General accounts of continuous flows on metric spaces have been given by
Bhatia and Szego ([2], Chapter 2) and Nemytskii and Stepanov ([8], Chapter
5). The reader is referred to these texts, particularly the former, for further
details about most of the concepts defined in this section.
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3. Prolongation elements.
Let $x$, $y¥in X$ and $E¥subseteq X$ be non-void. Then $E$ is called a positive prolongation

element from $x$ to $y$ and denoted $D^{+}(x, y)$ if
(i) there exist a sequence $¥{x_{n}¥}$ of points of $X$ and a positive sequence

$¥{t_{n}¥}$ such that $x_{n}¥rightarrow x$ , $x_{n}t_{n}¥rightarrow y$ , and
(ii) $e¥in E$ iff there exist a non-negative sequence $¥{¥tau_{n}¥}$ with $0¥leqq¥tau_{n}¥leqq t_{n}$ for all

$n$ and a subsequence of $¥{x_{n}¥tau_{n}¥}$ tending to $e$ .

The sequence $¥{¥Gamma_{n}¥}$ of trajectory arcs, where for each $n$ , $¥Gamma_{n}=¥{x_{n}t : 0¥leqq t¥leqq t_{n}¥}$ ,

will be said to be associated with $E$ .

$E$ is called a positive prolongation element if it is a positive prolongation
element from $x$ to $y$ for some $x$, $y¥in X$.

The concept of prolongation element is closely related to, but is not identical
with, that of prolongation with respect to a sequence of points in $X$ and a seq-

uence of $¥mathrm{i}¥mathrm{n}¥mathrm{t}¥mathrm{e}¥dot{¥mathrm{r}}$ vals in $x$, as introduced by Ura ([12], Definition 1, p. 264 and
Example 1, p. 265). In Ura’s terminology the positive prolongation element
$D^{+}(x, y)$ is the (first) prolongation of $x$ with respect to $¥{x_{n}¥}$ and the sequence
of intervals $¥{[0, t_{n}]¥}$ . On the other hand, as simple examples show, a prolonga-
tion of $x$ with respect to a sequence $¥{x_{n}¥}$ of points in $X$ and a sequence
$¥{[0, t_{n}]¥}$ of intervals in $f$ is not necessarily a positive prolongation element
from $x$, although it will always contain one.

In the propositions to follow we establish some properties of prolongation
elements sufficient for our needs in the next section.

Proposition 1. Let $x$, $y¥in X$. Then there exists a positive prolongation ele-
ment from $x$ to $y$ iff $y¥in D^{+}(x)$ .

Remark. Even when a positive prolongation element from x to y exists
it need not be unique.

Proposition 2. Let $D^{+}(x, y)$ be a positive prolongation element from $x$ to
$y$ . Then

(i) $¥{x, y¥}¥subseteq D^{+}(x, y)¥subseteq D^{+}(x)$ ;

(ii) $D^{+}(x, y)¥acute{¥iota}s$ closed.
The proofs of both parts are obvious.
Proposition 3. Let the flow on $X$ be continuous. Suppose $D^{+}(x, y)$ is $a$

positive prolongation element from $x$ to $y$ which, together with a sequence of
associated trajectory arcs, is contained in some compact subset of X. Then
$D^{+}(x, y)$ is connected.

Since we do not use this proposition in the sequel we omit a proof. A proof
exactly similar to that establishing the connectedness of the limit set of a Lag-
range stable semi-trajectory is possible. See, for example, Nemytskii and Ste-
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panov ([8], 3. 09, p. 342). For a similar result, but differing in context, see
Ura ([12], Theorem 1, p. 265).

Proposition 4. Let $D^{+}(x, y)$ be a positive prolongation element from $x$ to $y$

and let $M$ be a closed, invariant subset of $D^{+}(x, y)$ . Then
(i) if $x¥not¥in M$ and $y¥not¥in M$, $M$ is a saddle set with respect to any sequence of

arcs associated with $D^{+}(x, y)$ ;

(ii) if $x¥not¥in M$ or $y¥not¥in M$, $M$ is non-dense ;

(iii) if $x¥not¥in M$, $M¥subseteq J^{+}(x)$ and if y&M, $M¥subseteq J^{-}(y)$ .

Remark on (i). That $M$ is a saddle set if $x¥not¥in M$ and $y¥not¥in M$ follows from
a result of Ura ([12], Theorem 1, p. 283) and remarks made above about $D^{+}(x, y)$ .
Ura establishes his result in a somewhat different context but his method of
proof, suitably transcribed, would apply equally well here.

Proof of (i) and (ii). Let $¥{¥Gamma_{n}¥}$ be a sequence of trajectory arcs associated
with $D^{+}(x, y)$ , where for each $n$ , $¥Gamma_{n}=¥{x_{n}t:0¥leqq t¥leqq t_{n}¥}$ ; so that $x_{n}¥rightarrow x$ and
$x_{n}t_{n}¥rightarrow y$ .

(i) Suppose that $x¥not¥in M$ and $y¥not¥in M$. Let 2$¥Delta=¥min(¥rho(x, M), ¥rho(y, M))$ so that
$¥Delta>0$ . Then for all large $n$, $¥min(¥rho(¥mathrm{x}_{¥mathrm{n}}, x), ¥rho(x_{n}t_{n}, y))<¥Delta$ so that $x_{n}¥not¥in S(M, ¥Delta)$

and $x_{n}t_{n}¥not¥in S(M, ¥Delta)$ . Let $V$ be a neighbourhood of $M$. For arbitrarily large
$k$, since $M¥subseteq D^{+}(x, y)$ , $¥Gamma_{k}¥cap V¥neq¥phi$ and from above $x_{k}¥not¥in S(M, ¥Delta)$ , $x_{k}t_{k}¥not¥in S(M, ¥Delta)$ .
Thus $M$ is a saddle set with respect to $¥{¥Gamma_{n}¥}$ .

(ii) Suppose that $x¥not¥in M$ ; an exactly similar proof applies if $y¥not¥in M$. Suppose
if possible that $m¥in M$ is an interior point with neighbourhood $U¥subseteq M$. Then
there exists a positive sequence $¥{¥tau_{n}¥}$ such that $x_{n}¥tau_{n}¥rightarrow m$ , as we may suppose for
notational convenience. Thus for all sufficiently large $n$ , $x_{n}¥tau_{n}¥in U¥subseteq M$ and so
$x_{n}¥in M$. Since $¥rho(x, M)>0$, $x_{n}-¥neq+x$ ; a contradiction in view of which $M$ has
empty interior and so, being closed, is non-dense.

The proof of (iii) is preceded by two lemmas.
Let $Y¥subseteq X$ and $y¥in Y$. We say that $y$ leaves $Y$ positively if $¥gamma+(y)¥not¥subset¥_ Y$.

Lemma 1. If $¥mathrm{Y}¥subseteq X$ is open, $y¥in Y$ and $y$ leaves $¥mathrm{Y}$ positively then there
exists $¥tau>0$ such that $y¥tau¥not¥in Y$ while $yt¥in Y$ for $ 0¥leqq t<¥tau$.

For a proof define $¥tau=¥inf¥{t>0 : yt¥not¥in Y¥}$ . We omit the routine details.
The point $¥mathrm{y}¥mathrm{r}$ whose existence is guaranteed under the conditions of the pre-

vious lemma is called the first exit-point from $Y$ of $T^{+}(y)$ .
Lemma 2. Let $M¥subseteq X$ be invariant and $¥epsilon>0$ . Let $¥{m_{n}¥}$ be a sequence of

points in $X¥backslash M$ converging to the point $m¥in M$ and such that for all $n$, $m_{n}$ leaves
$S(M, ¥epsilon)$ positively. Then we may assume, by considering a subsequence if
necessary, that

$ 1<¥tau_{1}<¥tau_{2}<¥cdots<¥tau_{n}<¥tau_{n+1}<¥cdots¥rightarrow+¥infty$ ,
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where $m_{n}¥tau_{n}$ denotes the first exit-point from $S(M, ¥epsilon)$ of $¥gamma+(m_{n})$ .
An inductive proof follows from the continuous dependence on initial po-

sition which implies that points of the sequence $¥{m_{n}¥}$ sufficiently close to $m$ will

follow it arbitrarily closely and so remain arbitrarily near $M$ for arbitrarily long

time. We omit the routine details.
Proof of Proposition 4. (iii). We prove that $M¥subseteq J^{-}(y)$ if $y¥not¥in M$ ; an exa-

ctly similar proof shows that $M¥subseteq J^{+}(x)$ if $x¥not¥in M$.
Let 2$¥Delta=¥rho(y, M)$ so that $¥Delta>0$ . Let $m¥in M¥subseteq E$ so that there exists $t_{n}^{*}$ with

$0¥leqq t_{n}^{*}<t_{n}$ for all $n$ such that, as we may suppose, $x_{n}t_{n}^{*}¥rightarrow m$ . For each $n$ , write
$m_{n}=x_{n}t_{n}^{*}$ and $T_{n}=t_{n}-t_{n^{*}}>0$ . We may suppose that for all $n$, $m_{n}¥in S(m, ¥Delta)$

$¥subseteq S(M, ¥Delta)$ and $m_{n}T_{n}=x_{n}t_{n}¥in S(y, ¥Delta)$ . Hence $m_{n}$ leaves $S(M, ¥Delta)$ positively. If
$m_{n}¥tau_{n}$ denotes the first exit point from $S(M, ¥Delta)$ of $¥gamma+(m_{n})$ we may assume by

Lemma 2 that

$ 1<¥tau_{1}<¥tau_{2}<¥cdots<¥tau_{n}<¥tau_{n+1}<¥cdots¥rightarrow+¥infty$ .

Since for all $n$, $T_{n}>¥tau_{n}$ it follows that $ T_{n}¥rightarrow+¥infty$ . Hence $y¥in J^{+}(m)$ and so
$m¥in J^{-}(y)$ . Thus $M¥subseteq J^{-}(y)$ .

Proposition 5. Let $M¥subseteq X$ be a closed invariant set, $x¥in M$, $y¥in X¥backslash M$ and
$D^{+}(x, y)$ be a positive prolongation dement from $x$ to $y$ . Then
(i) $D^{+}(x, y)¥backslash M¥subseteq J^{+}(x)$ ;

(ii) $D^{+}(x, y)¥backslash M$ is negatively invariant.
Proof. (i) The proof follows along much the same lines as that $¥mathrm{o}¥mathrm{t}$ Pro-

position 4 (iii). We omit the routine details.
(u) Let $p¥in D^{+}(x, y)¥backslash M$ and $t¥leqq 0$ . Firstly $pt¥not¥in M$ since $p¥not¥in M$. Since $ p¥in$

$D^{+}(x, y)$ there exist sequences $¥{x_{n}¥}$ and $¥{t_{n}¥}$ such that $t_{n}>0$ for all $n$, $x_{n}¥rightarrow x$

and $x_{n}t_{n}¥rightarrow y$ and, as we may suppose, a sequence $¥{¥tau_{n}¥}$ with $0¥leqq¥tau_{n}¥leqq t_{n}$ for all $n$

and $x_{n}¥tau_{n}¥rightarrow p$ . As previously it is no restriction to assume that $¥tau_{n}¥rightarrow+¥infty$ . Now
for all sufficiently large $n$, $0¥leqq¥tau_{n}+t¥leqq t_{n}$. Further $x_{n}(¥tau_{n}+t)=(x_{n}¥tau_{n})t¥rightarrow pt$ so
that $pt¥in D^{+}(x, y)$ . Hence $pt¥in D^{+}(x, y)¥backslash M$. Thus $¥gamma-(p)¥subseteq D^{+}(x, y)¥backslash M$ and
$D^{+}(x, y)¥backslash M$ is negatively invariant.

4. Unstable invariant sets.
Let $M¥subseteq X$ and $E¥subseteq X$. Then $E$ is called a positive prolongation element from

$M$ if it is a positive prolongation element from $x$ to $y$ for some $x¥in M$, $y¥in X¥backslash M$.
Throughout the remainder of this section we adopt the following
Standing hypothesis. $M$ shall denote a dosed subset of $X$, having $a$

neighbourhood with compact closure and invariant under the flow on $X$.

Proposition 6. There exists a positive prolongation element from $M$ iff $M$

is positively unstable.
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This proposition is an immediate consequence of Ura’s stability criterion
([11], Theorem 5, p. 177), $¥mathrm{v}¥mathrm{i}¥mathrm{z}$ , $M$ is positively stable iff $D^{+}(M)=M$. For a
proof of this criterion valid under present hypotheses see Bhatia and Szego ([2],

Theorems 2. 6. 5, 2. 6. 6, p. 135).
Theorem 1. Let $M$ be positively unstable so that positive prolongation ele-

ments from $M$ exist. For any positive prolongation element $E$ from $M$ and any

neighbourhood $U$ of $M$ there exists a point $p¥in(E¥cap U)¥backslash M$ such that $¥overline{¥gamma^{-}(p}$) $¥subseteq E¥cap U$.

Proof. Let $U$ be a neighbourhood of $M$. Then it is possible to choose
$¥epsilon>0$ small enough to ensure that $S[M, ¥epsilon]¥subseteq U$ and $S[M, ¥epsilon]$ is compact.

Let $E$ be a positive prolongation element from $M$. Thus there exist $m¥in M$,
$q¥equiv X¥backslash M$, a sequence $¥{m_{n}¥}$ of points of $X$ and a positive sequence $¥{t_{n}¥}$ such
that $m_{n}¥rightarrow m$ and $m_{n}t_{n}¥rightarrow q$. Choose $¥epsilon>0$ so that, in addition to restrictions already
made, 2$¥epsilon<¥rho(q, M)$ . Thus we may suppose that, for all $n$ , $m_{n}¥in S(M, ¥epsilon)$ and
$m_{n}$ leaves $S(M, ¥epsilon)$ positively. Denote by $m_{n}(¥tau_{n}+1)$ the first exit point from
$S(M, ¥epsilon)$ of $¥gamma+(m_{n})$ . By Lemma 2 we may assume that

$ 0<¥tau_{1}<¥tau_{2}<¥cdots<¥tau_{n}<¥tau_{n+1}<¥cdots¥rightarrow+¥infty$.

By definition of $¥tau_{n}$ , $../_{n}¥tau_{n}¥in S(M, ¥epsilon)$ so that we may assume, by choosing a sub-
sequence if necessary, that $¥{m_{n}¥tau_{n}¥}$ converges, to $p$ say. It is clear that $p¥in S[M, ¥epsilon]$

$¥subseteq U$. Since $pn_{n}(¥tau_{n}+1)¥rightarrow p1$ and $m_{n}(¥tau_{n}+1)¥not¥in S(M, ¥epsilon)$ for all $n$ , it follows that
$p1¥not¥in S(M, ¥epsilon)$ . Hence $p¥not¥in M$. Since $¥tau_{n}>0$ for all $n$ it is clear that $p¥in E$. Thus
$¥gamma^{-}(p)¥subseteq E$ and $¥overline{¥gamma-(p}$) $¥subseteq¥overline{E}=E$, $E$ being negatively invariant and closed.

Fix $t¥leqq 0$ . Now for all sufficiently large $n$, $0¥leqq¥tau_{n}+x¥leqq¥tau_{n}$ so that $m_{n}(¥tau_{n}+t)$

$¥in S(M, ¥epsilon)$ and

$¥rho(pt, M)¥leqq¥rho(pt, m_{n}(¥tau_{n}+t))+¥rho(m_{n}(¥tau_{n}+t), M)$

$<¥rho(pt, m_{n}(¥tau_{n}+t))+¥epsilon$ .

Let $ n¥rightarrow¥infty$ so that $m_{n}(¥tau_{n}+t)¥rightarrow pt$ to conclude that $¥rho(pt, M)¥leqq¥epsilon$ . Hence $¥tau^{-}(p)$

$¥subseteq S[M, ¥epsilon]$ and $¥overline{¥gamma-(p}$) $¥subseteq S[M, ¥epsilon]¥subseteq U$.

Thus the theorem is proved.

Remark. Note that $q¥not¥in L^{-}(p),¥mathrm{b}¥mathrm{y}$ choice of $¥epsilon$ and the fact that $L^{-}(p)¥subseteq¥overline{¥gamma-(p})$

$¥subseteq S[M, ¥epsilon]$ . Thus by Proposition 4 (ii), (iii), $L^{-}(p)$ is non-dense and $L^{-}(p)$

$¥subseteq J^{-}(q)$ .

In a different context Ura and Kimura have shown, en passant in Proposi-
tion 3 of [13], the existence of a negative semi-trajectory in any neighbourhood
of a positively unstable $¥check{1}¥mathrm{n}¥mathrm{v}¥mathrm{a}¥mathrm{r}¥mathrm{i}¥mathrm{a}¥mathrm{n}¥mathrm{t}$ set. When the flow is continuous the present

theorem is a special case of their result.
The analysis now continues with a study of the negative limit set $L^{-}(p)$ .
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Theorem 2. Refer to Theorem 1. As regards the point $p$ , $L^{-}(p)$ either
is a non-dense, minimal set in $M$ or contains a non-dense, minimal, saddle set.

Remark. Examples show that these alternatives are not exclusive and nei-
ther is superfluous.

The following sufficient condition for a set to be a saddle set will be used
in the proof of Theorem 2.

Lemma 3. The set $M¥subseteq X$ is a saddle set if
(i) there exists $x¥not¥in M$ such that $ L^{+}(x)¥cap M¥neq¥phi$ and $ J^{+}(x)¥backslash M¥neq¥phi$ ;

or (ii) there exists $y¥not¥in M$ such that $ L^{-}(y)¥cap M¥neq¥phi$ and $ J^{-}(y)¥backslash M¥neq¥phi$ .

The sufficiency of either condition, and the necessity of both, have been
proved by Saito ([9], Theorem 2) when the flow is continuous under the addi-
tional hypothesis that in some neighbourhood of, but outside $M$ there are no
minimal sets. This hypothesis is, however, superfluous to the sufficiency, as
his proof shows. Saito also assumes that $X$ is locally compact and $M$ is compact
(conditions which together imply our standing hypothesis) although his proof
is valid under our standing hypothesis.

Proof of Theorem 2. There are three cases to consider,

(i) If $L^{-}(p)$ is minimal and $ L^{-}(p)¥cap M¥neq¥phi$ then $L^{-}(p)¥subseteq M$.

(ii) If $L^{-}(p)$ is minimal and $ L^{-}(p)¥cap M=¥phi$ then $m¥not¥in L^{-}(p)$ , $q¥not¥in L^{-}(p)$ and
it follows from Proposition $4(¥mathrm{i})$ that $L^{-}(p)$ is a saddle set.

(iii) If $L^{-}(p)$ is not minimal consider the minimal sets in $L^{-}(p)$ . There is
at least one, $K$ say. Further $p¥not¥in K$ ; for otherwise $L^{-}(p)=K$ and $L^{-}(p)$ is
minimal contrary to hypothesis. Clearly $¥phi¥neq K=L^{-}(p)¥cap K$ and $¥phi¥neq L^{-}(p)¥backslash K¥subseteq$

$,f^{-}(p)¥backslash K$ so that, by Lemma 3, $K$ is a saddle set.

Finally minimal sets in $L^{-}(p)$ are necessarily non-dense since $L^{-}(p)$ is.
Thus considering the three cases the theorem is proved.

The next theorem, a deduction from Theorems 1 and 2 relevant to a result
of Ura, shows the necessity of Zubov’s condition for the positive instability of
invariant sets with a certain “isolation” property.

Theorem 3. Let $M$ be positively unstable. Suppose there is a positive
prolongation element $E$ from $M$ and a neighbourhood $V$ of $M$ such that $(E¥cap V)¥backslash M$

contains no non-dense, minimal, saddle set. Then for any neighbourhood $U$ of
$M$ there exists a point $p¥in(E¥cap U)¥backslash M$ such that $¥overline{¥gamma-(p)}¥subseteq U$ and $ L^{-}(p)¥cap M¥neq¥phi$ .

Proof. Let $U$ be a neighbourhood of $M$. Then there exists a neighbour-
hood $W$ of $M$ such that $W¥subseteq U¥cap V$. By Theorem 1 there exists $p¥in(E¥cap W)¥backslash M$

$¥subseteq(E¥cap U)¥backslash M$ such that $¥overline{¥gamma-(p}$) $¥subseteq E¥cap W¥subseteq E¥cap U¥cap V$. Hence $¥overline{¥gamma-(p}$) $¥subseteq U$ and since
$¥overline{¥gamma-(p})¥subseteq E¥cap V$, $L^{-}(p)¥subseteq E¥cap V$. By Theorem 2, $L^{-}(p)$ either is a minimal set in
$M$, in which case the theorem is proved, or it contains a non-dense, minimal,
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saddle set, $K$ say. It follows from the hypothesis since $K¥subseteq L^{-}(p)¥subseteq E¥cap V$ that
$K¥subseteq M$ and the theorem is proved in this case also.

This theorem clearly generalizes and strengthens, for continuous flows, a
result of Ura ([12], Corollary, p. 286), (or rather that part of it which is not
an a fortiori consequence of the sufficiency of Zubov’s condition for instability),
$¥mathrm{v}¥mathrm{i}¥mathrm{z}$ , if $M$ is positively unstable and if there are in some neighbourhood of $M$

no non-dense, saddle sets disjoint from $M$, then $ L^{-}(X¥backslash M)¥cap M¥neq¥phi$ .
There is an important if easy consequence of Theorem 3.
Theorem 4. Let $M$ be positively unstable so that positive prolongation ele-

ments from $M$ exist. Then either $ L^{-}(X¥backslash M)¥cap M¥neq¥phi$ or for any positive prolong-
ation element $E$ from $M$ and any neighbourhood $V$ of $M$ there is a non-dense,
minimal, saddle set in $(E¥cap V)¥backslash M$.

Proof. Either $ L^{-}(X¥backslash M)¥cap M¥neq¥phi$ or else $ L^{-}(X¥backslash M)¥cap M=¥phi$ , in which case
the result follows from the contraposition of Theorem 3.

Remarks. 1. Examples show that these alternatives are not mutually exclu-
sive and neither is superfluous.

2. On the other hand if $M$ is positively stable there are no positive prolonga-
tion elements from $M$ and, as is well known, $ L^{-}(X¥backslash M)¥cap M=¥phi$ .

3. In the second alternative the non-dense, minimal sets in $(E¥cap V)¥backslash M$

are, in view of Proposition 4 (i), saddle sets with respect to any sequence of
trajectory arcs associated with $E$ .

Theorem 4 may be deduced for continuous flows from a resuh of Ura ([12],
Theorem 2, p. 284) if we observe that his analysis, given on a particular pro-
longation of some point of $M$ with respect to a sequence in $X$ and a sequence of
intervals in $f$, applies equally well on any such prolongation and in particular
on any positive prolongation element from $M$. Thus if $ L^{-}(X¥backslash M)¥cap M=¥phi$ , on
any positive prolongation element from $M$, by (7), there is in any neighbour-
hood of and outside $M$ a minimal set, which by $(10)^{+}$ is a saddle set, necessarily
non-dense by (6). (Figures in parentheses refer to the sections of Ura’s theo-
rem.)

Remark on Ura’s work. As regards the context of Ura’s work in relation
to our own we remark here, although it is appropriate elsewhere, that a con-
tinuous flow on $X$ will constitute a “uniform dynamical system” in the sense
of Ura ([12], §1, p. 252) iff $X$ can be embedded in a space $¥tilde{X}$ in such a way
that it is open and relatively compact in $¥tilde{X}$ . See [12], Example 1, p. 254. On
the other hand a continuous flow on $X$ restricted in an obvious sense to an open
neighbourhood $S(M, ¥epsilon)$ , where $¥epsilon>0$ is so small that $S[M, ¥epsilon]$ is compact (refer
to the standing hypothesis), constitutes a uniform dynamical system in Ura’s
sense and his analysis applies to this “restricted” flow.
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We continue the analysis of the flow near positively unstable sets $M$ for
which $ L^{-}(X¥backslash M)¥cap M=¥phi$ in the direction of some work of Bass and Ura.

Theorem 5. Let $M$ be positively unstable and $ L^{-}(X¥backslash M)¥cap M=¥phi$ . Then
for any positive prolongation element $E$ from $M$ there is in $M$ a limit point of
a sequence $¥{p_{k}¥}$ of points in $E¥backslash M$ such that

1) for each $k$ , $p_{k}$ belongs to some minimal set $M_{k}¥subseteq E¥backslash M$ and $ M_{j}¥cap M_{k}=¥phi$

when $j¥neq k$ ,

2) on any sequence of trajectory arcs associated with $E$ there exists a double
sequence $¥{p_{kn}¥}$ of points in $X¥backslash M$ such that

(i) $p_{1n}¥rightarrow p_{1}$ as $ n¥rightarrow¥infty$ ,

(ii) for each $n$ , $k,p_{(k+1)n}=p_{kn}¥tau_{kn}$ for some $¥tau_{kn}¥leqq 0$,

(iii) for each $k$ , some subsequence of $¥{p_{(k+1)n}¥}$ tends to $p_{k+1}$ and if, for
notational convenience, we assume this subsequence to be $¥{p_{(k+1)n}¥}$ then $¥tau_{kn}¥rightarrow-¥infty$

as $ n¥rightarrow¥infty$ .

Proof. Let $E$ be a positive prolongation element from $m¥in M$ to $q¥in X¥backslash M$

with an associated sequence $¥{¥Gamma_{n}¥}$ of trajectory arcs. Thus there exists a se-
quence $¥{m_{n}¥}$ with $m_{n}¥in¥Gamma_{n}$ for all $n$ and $m_{n}¥rightarrow m$ . Let $¥epsilon_{1}$ be such that $0<¥epsilon_{1}<1$ .
By Theorem 4 there exists in $S(M, ¥epsilon_{1})$ a minimal set $M_{1}¥subseteq E¥backslash M$, Let $p_{1}¥in M_{1}¥subseteq E¥backslash M$.
Thus there exists a positive sequence $¥{t_{1n}¥}$ such that, as we may suppose,
$m_{n}t_{¥perp n}¥rightarrow p_{1}$ . Write $p_{1n}=m_{n}t_{1n}$ .

Consider now the positive prolongation element $E_{1}¥subseteq E$ from $m$ to $p_{1}$ with
associated trajectory arcs $¥{¥Gamma_{1n}¥}$ where $¥Gamma_{1n}=¥{m_{n}t : 0¥leqq t¥leqq t_{1n}¥}¥subseteq¥Gamma_{n}$ . Let $¥epsilon_{2}$ be
such that $ 0<¥epsilon_{2}<¥min$ ($¥frac{1}{2}$ , $¥rho(M_{1}, M)$). By Theorem 4 there exists in $S(M, ¥epsilon_{2})$ a
minimal set $M_{2}¥subseteq E_{1}¥backslash M¥subseteq E¥backslash M$. Ckarly $ M_{1}¥cap M_{2}=¥phi$. Let $p_{2}¥in M_{2}¥subseteq E_{1}¥backslash M¥subseteq E¥backslash M$.
Thus there exist a positive sequence $¥{t_{2n}¥}$ with $0<t_{2n}¥leqq t_{1n}$ for each $n$ and a
subsequence of $¥{m_{n}t_{2n}¥}$ converging to $p_{2}$ . Define $p_{¥mathit{2}n}=m_{n}t_{¥mathit{2}n}$ , $¥tau_{1n}=t_{2n}-t_{1n}$, so
that $¥tau_{1n}¥leqq 0$ and $p_{ln}¥tau_{ln}=m_{n}t_{ln}(t_{¥mathit{2}n}-t_{ln})=m_{n}t_{¥mathit{2}n}=p_{2n}$ for all $n$ . Now if for nota-
tional convenience we assume that $p_{2n}¥rightarrow p_{2}$ by a familiar argument based on
Lemma 2 applied to $M_{1}$ and $¥{¥Gamma_{1n}¥}$ we may assume that $¥tau_{1n}¥rightarrow-¥infty$ .

The proof now proceeds iteratively. Repeat the argument with $M_{2},p_{2}$ , $¥{p_{2n}¥}$

replacing $M_{1},p_{1}$ , $¥{p_{1n}¥}$ respectively in order to determine $M_{3},p_{3}$ and $¥{p_{3n}¥}$ etc.
At the $k-$th stage of the proof are determined a minimal set $M_{k}$ in $(S(M, 1/k)$

$¥cap E)¥backslash M$ disjoint from $M_{1}$ , $M_{2}$, $¥cdots$ , $ M_{k1}¥_$
’ a point $p_{k}¥in M_{k}$ and a sequence $¥{p_{kn}¥}$

with the required properties. We omit the routine details.
For continuous flows, Bass ([1], Theorem 2) has given a stability criterion.

The non-trivial part of his result may be stated thus:
If $M$ is positively unstable and $ L^{-}(X¥backslash M)¥cap M=¥phi$ then there is in $M$ a limit

point of a sequence $¥{p_{k}¥}$ of points of $X¥backslash M$ such that
1)’ for each $k$ , $¥phi¥neq L^{-}(p_{k})$ and $p_{k+1}¥not¥in L^{-}(p_{k})$,
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2)’ there exist a sequence $¥{p_{1n}¥}$ of points of $X¥backslash M$ and a double sequence $¥{t_{kn}¥}$

of real numbers such that
(i) for each $n$, $ 0=t_{1n}>t_{2n}>¥cdots>t_{kn}>t_{(k+1)n}>¥cdots$ ,

(ii) for each $k¥geqq 2$, $ t_{kn}¥rightarrow-¥infty$ as $ n¥rightarrow¥infty$ ,

(iii) for each $k,p_{1n}t_{kn}¥rightarrow p_{k}$ .

In the author’s view, however, Bass’ proof fails because of the necessity

of making a countable infinity of choices of subsequences. Ura ([12], Theorem
$2(10^{¥prime})$ , p. 284) has given a generalization of Bass’ criterion to which, the author
feels, in the absence of details of proof, the same criticism will apply. It should
be observed that our Theorem 5 strengthens Bass’ result in certain respects while
weakening it in so far as it asserts the existence of certain convergent sub-

sequences only.
The analysis now continues with a study of that part of $L^{-}(p)$ , if any,

outside $M$, where $p$ is the point referred to in Theorem 1.
Let $Y¥subseteq X$. We define three subsets of Y. Let $Q(Y)$ denote the union of

non-dense, minimal saddle sets in $Y$. Define subsets, denoted $¥Phi^{¥pm}(Y)$ , by
$¥Phi^{¥pm}(Y)=$ { $y¥in Y:y¥not¥in L^{¥pm}(y)$ , $L^{¥pm}(y)$ is a non-dense, saddle set}.
Theorem 6. Refer to Theorem 1. As regards the point $p$, $ L^{-}(p)¥backslash M¥subseteq$

$Q(p)¥cup¥overline{¥mathcal{Q}^{)+}(p)}$ and $L^{-}(p)¥backslash M¥subseteq Q(p)¥cup¥overline{q)-(p)}$, where $Q(L^{-}(p)¥backslash M)$ has been
abbreviated $Q(p)$ etc.

For a proof we need the two following lemmas.
Lemma 4. In a flow on a compact space if $x¥in L^{+}(x)$ either $L^{+}(x)$ is minimal

or there exist points $y¥in L^{+}(x)$ such that $¥overline{T^{+}(y)}¥subset L^{+}(x)$ . Further the set of such
points is dense in $L^{+}(x)$ .

Remark. The strict inclusion of $¥overline{¥gamma+(y}$) in $L^{+}(x)$ will be important.
A proof in the case of a continuous mapping of a compact space into itself,

of which a discrete flow on a compact space is a special case, has been given
by Friedlander ([14], Theorem 9) thus generalising and strengthening a result
of Cherry ([3], Theorem VIII). This proof is valid, mutatis mutandis, in the
case of a continuous flow.

Lemma 5. If $x$, $y¥in X$ and $y¥in L^{+}(x)$ then $y¥in J^{+}(y)$ and so $y¥in J^{-}(y)$ .

The lemma states that points in limit sets are “non-wandering’’. For a
proof see Ura ([12], Proposition 1, p. 287).

Proof of Theorem 6. If $ L^{-}(p)¥backslash M=¥phi$ the result is trivial. In the contrary
case let $r¥in L^{-}(p)¥backslash M$ so that $¥phi¥neq L^{-}(r)¥subseteq L^{-}(p)$ and by Lemma 5, $r¥in J^{+}(r)¥cap J^{-}(r)$ .

To begin with limit sets in $L^{-}(p)¥backslash M$ are necessarily non-dense, since $L^{-}(p)$ is.
Concerning $r$ there are three cases to consider.

(i) If $r¥not¥in L^{+}(r)$ then $¥phi¥neq L^{+}(r)=¥mathrm{L}^{+}(r)¥cap L^{+}(r)$ and $r¥in J^{+}(r)¥backslash L^{+}(r)$ . Hence
by Lemma 3, $L^{+}(r)$ is a saddle set. Thus $r¥in ff^{+}(p)$ .
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(ii) If $r¥in L^{+}(r)$ and $L^{+}(r)$ is minimal then $ L^{+}(r)¥cap M=¥phi$ ; for otherwise $r¥in M$.

Since $m¥not¥in L^{+}(r)$ , $q¥not¥in L^{+}(r)$ it follows from Proposition 4 (i) that $L^{+}(r)$ is a
saddle set. Thus $r¥in Q(p)$ .

(iii) If $r¥in L^{+}(r)$ and $L^{+}(r)$ is not minimal we use Lemma 4 applied to the
subflow on the compact, invariant set $L^{+}(r)$ . Thus there exists in any neighbour-

hood of $r$ and so outside $M$, as we may suppose, a point $s$ such that $¥overline{T^{+}(s)}¥subset$

$L^{+}(r)$ . Hence $L^{+}(s)¥subset L^{+}(r)$ and so $r¥not¥in L^{+}(s)$ . Further $¥phi¥neq L^{+}(s)=L^{+}(r)¥cap L^{+}(s)$

and $r¥in J^{+}(r)¥backslash L^{+}(s)$ . Hence by Lemma 3, $L^{+}(s)$ is a saddle set. Thus $s¥in ff^{+}(p)$

and so $r¥in¥overline{¥varphi+(p)}$ .

Finally it follows that $L^{-}(p)¥backslash M¥subseteq Q(p)¥cup¥overline{ff^{+}(p)}$ . The same argument ap-

plied to negative limit sets and using sense variants of the lemmas shows that
$L^{-}(p)¥backslash M¥subseteq Q(p)¥cup¥overline{¥varphi-(p)}$ . Thus the theorem is proved.

The next theorem, a deduction from Theorem 6 relevant to a result of Ura,
gives a necessary condition, stronger than Zubov’s, for the positive instability

of invariant sets with a certain “isolation” property.

Theorem 7. Let $M$ be positively unstable. Suppose there is a positive pro-
longation element $E$ from $M$ and a neighbourhood $V$ of $M$ such that non-dense,
negative saddle limit sets in $E¥cap V$ are in fact in M. Then for any neighbour-

hood $U$ of $M$ there exists a point $r¥in(E¥cap U)¥backslash M$ such that $¥phi¥neq L^{-}(r)¥subseteq M$.

Proof. Let $U$ be a neighbourhood of $M$. Then there exists a neighbour-

hood $W$ of $M$ such that $W¥subseteq U¥cap V$. By Theorem 1 there exists $p¥in(E¥cap W)¥backslash M$

$¥subseteq(E¥cap U)¥backslash M$ such that $¥phi¥neq L^{-}(p)¥subseteq E¥cap W¥subseteq E¥cap V$ . Further $L^{-}(p)$ is non-dense.
There are two cases to consider.
(i) $L^{-}(p)¥subseteq M$, in which case the theorem is proved ; take $r=p$ ;

(ii) $ L^{-}(p)¥backslash M¥neq¥phi$. Then $ Q(p)=¥phi$ ; for otherwise there exists a minimal set
$K=L^{-}(K)¥subseteq L^{-}(p)¥backslash M¥subseteq(E¥cap V)¥backslash M$, by Proposition 4 (i) a saddle set, contrary

to hypothesis. Hence by Theorem 6, $L^{-}(p)¥backslash M¥subseteq¥overline{¥varphi-(p)}$ . Thus there exists a
point $r¥in L^{-}(p)¥backslash M¥subseteq(E¥cap U)¥backslash M$ such that $¥phi¥neq L^{-}(r)$ and $L^{-}(r)$ is a non-dense,
saddle set in $L^{-}(p)$ and so in $E¥cap V$. By hypothesis $L^{-}(r)¥subseteq M$ and the theorem
is proved.

This theorem generalizes for continuous flows one of Ura ([12], Theorem 3,
p. 286), (or rather that part of it which is not an a fortiori consequence of the
sufficiency of Zubov’s condition for instability), $¥mathrm{v}¥mathrm{i}¥mathrm{z}$, if $M$ is positively unstable
and if there are, in some neighbourhood of $M$, no closed, invariant sets apart

from those in $M$, then there exists a point $r¥in X¥backslash M$ such that $¥phi¥neq L^{-}(r)¥subseteq M$.

There is an important consequence of this theorem, whose easy proof we
omit.

Theorem 8. Let $M$ be positively unstable so that positive prolongation ele-
ments from $M$ exist. Then either there is a point outside $M$ whose negative
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limit set is contained in $M$ or for any positive prolongation element $E$ of $M$ and
any neighbourhood $V$ of $M$ there is a non-dense, negative saddle limit set in
$E¥cap V$ not wholly contained in $M$.

The first two remarks following Theorem 4 apply equally well here.
Theorem 9. Let $M$ be positively unstable suppose there is a positive pro-

longation element $E$ from $M$ and a neighbourhood $V$ of $M$ such that non-dense,
positive saddle limit sets in $E¥cap V$ are in fact in M. Then for any neighbourhood
$U$ of $M$ there exists a point $r¥in(E¥cap U)¥backslash M$ such that $¥phi¥neq L^{-}(r)¥subseteq M$ or $¥phi¥neq L^{+}(r)$

$¥subseteq M$.
Proof. Repeat the proof of Theorem 7 to the stage of showing that if

$ L^{-}(p)¥backslash M¥neq¥phi$ then $ Q(p)=¥phi$ . This merely requires the observation that $K=$

$L^{+}(K)$ . Then by Theorem 6, $L^{-}(p)¥backslash M=¥overline{¥varphi+(p)}$ and, using the same argument
as in Theorem 7, there exists a point $r¥in(E¥cap U)¥backslash M$ with $¥phi¥neq L^{+}(r)¥subseteq M$. Hence
the theorem is proved.

5. Planar continuous flows.
Standing hypotheses. Throughout this section we consider a continuous

flow on a metrizable, orientable, (topological) 2-manifold $X$ with the additional
property that any Jordan curve $C$ in $X$ decomposes $¥mathrm{X}¥tilde{¥mathrm{i}}¥mathrm{n}¥mathrm{t}¥mathrm{o}$ two connected, open
sets $D_{1}$ , $D_{2}$ which have $C$ as common boundary $¥mathrm{i}.¥mathrm{e}$ .

$X¥backslash C=D_{1}¥cup D_{2}$ , $¥partial D_{1}=C=¥partial D_{2}$ .

We adopt Hajek’s definition of a 2-manifold. See [6], p. 8 and the references
cited there. By a Jordan curve is meant a homeomorph of the 1-sphere $S^{1}$ .

The Euclidean plane $R^{2}$, the 2-sphere $S^{2}$ and the cylinder $S^{1}¥times R$ are amon-
gst the 2-manifolds of the type considered, but not the 2-torus $S^{1}¥times S^{1}$ nor the
projective plane $P^{2}$ .

Proofs in the present section rely heavily on results contained in Hajek’s
recent book [6] concerning what he calls “continuous local dynamical systems
on dichotomic carriers”. The flows under consideration here form a special case
of these and are described in Hajek’s terms as “continuous global dynamical
systems on metrizable, dichotomic carriers”. The reader is referred to [6], in
particular to Definitions 1. 1 and 1. 2 p. 44, 1. 1 p. 92, 4. 2 p. 173 and a parenthe-
sized remark in 6. 1 on p. 39. The metrizability of $X$ is a non-redundant con-
dition necessary for the application of earlier results of this paper.

Throughout this section $M¥subseteq X$ shall be subject to the standing hypothesis of
Section 4.

The following theorem clearly resolves in the affirmative, for flows on the
class of 2-manifolds under present consideration, the conjecture proposed in
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Section 1.
Theorem 10. Let $M$ be positively unstable. Suppose there is a positive

prolongation element $E$ from $M$ and a neighbourhood $V$ of $M$ such that
$(E¥cap V)¥backslash M$ contains no saddle fixed points. Then for any neighbourhood $U$

of $M$ there exists a point $r¥in(E¥cap U)¥backslash M$ such that $¥phi¥neq L^{-}(r)¥subseteq M$.
Before giving a proof of this theorem we need two lemmas.
Lemma 6. A cycle is not a saddle set.
Proof. Suppose to the contrary that $C$ were a cycle and a saddle set.

Let $D_{1}$ , $D_{2}$ denote the two components of $X¥backslash C$ . Consider the flows obtained by
restriction (in the obvious sense) of the flow on $X$ to $¥overline{D}_{1}$ and $¥overline{D}_{2}$ . (Note that
$¥overline{D}_{1}$ and $¥overline{D}_{2}$ are both invariant.) Then $C$, being a saddle set, is a saddle set
and so unstable in both senses as regards one at least of these flows, say that
on $¥overline{D}_{1}$ . On the other hand $C$ is stable in at least one sense as regards the flow
on $¥overline{D}_{1}$ . This follows from what Hajek calls the “cycle stability theorem” ([6],
3. 3, p. 196), which asserts basically that a cycle $C$ is stable in at least one
sense as regards the flows on both $¥overline{D}_{1}$ and $¥overline{D}_{2}$ and elaborates on the nature of
its stability. In view of this contradiction the result follows.

Concerning the cycle stability theorem the reader should check in particular
that orbital stability in the sense of Hajek is equivalent to stability in the sense
of this paper. See $¥mathrm{D}¥mathrm{e}¥mathrm{f}¥mathrm{i}¥mathrm{n}¥check{¥mathrm{i}}¥mathrm{t}¥mathrm{i}¥mathrm{o}¥mathrm{n}$ $4$ . 9 and Remarks 4. 10 on p. 113 of [6].

For the same result in a different context see Ura ([12], Lemma 1, p. 291).
Lemma 7. If $x¥in X$ then $L^{+}(x)$ is a cycle or, for all $y¥in L^{+}(x)$ , $ L^{+}(y)¥cup$

$L^{-}(y)$ consists entirely of fixed points.
This is, in our language and notation, Proposition 1. 11 on p. 184 of [6].
Proof of Theorem 10. Let $U$ be a neighbourhood of $M$. Then there

exists a neighbourhood $W$ of $M$ such that $W¥subseteq U¥cap V$. By Theorem 1 there exists
$p¥in(E¥cap W)¥backslash M¥subseteq(E¥cap U)¥backslash M$ such that $¥phi¥neq L^{-}(p)¥subseteq E¥cap W¥subseteq E¥cap V$. There are
two cases to consider.
(i) $L^{-}(p)¥subseteq M$, in which case the theorem is proved; take $r=p$ .

(ii) $ L^{-}(p)¥backslash M¥neq¥phi$, in which case $L^{-}(p)$ is not a cycle. For if so, since $L^{-}(p)$

is minimal, $ L^{-}(p)¥cap M=¥phi$ and, by Proposition 4 (i), $L^{-}(p)$ is a saddle set,
contradicting Lemma 6. It follows from Lemma 7 that, for any $r¥in L^{-}(p)¥backslash M$,
$ L^{-}(r)¥neq¥phi$ consists entirely of fixed points. Should any of these points lie outside
$M$ they are, by Proposition $4(¥mathrm{i})$ , saddle fixed points in $L^{-}(r)¥backslash M¥subseteq(E¥cap V)¥backslash M$ ;
contradicting the hypothesis. Thus $¥phi¥neq L^{-}(r)¥subseteq M$ for any $r¥in L^{-}(p)¥backslash M$ and the
theorem is proved.

Remark. When the second case obtains, $¥phi¥neq L^{+}(r)¥subseteq M$ for all $r¥in L^{-}(p)¥backslash M$,
as a similar proof shows.

This theorem generalizes and strengthens for continuous flows a result of
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Ura ([12], Corollary, p. 292), (or rather that part of it which is not an a fortiori
consequence of the sufficiency of Zubov’s condition for instability), $¥mathrm{v}¥mathrm{i}¥mathrm{z}$ , for $a$

continuous flow on $R^{2}$, if $M$ is positively unstable and if in some neighbourhood

of $M$ there are no saddle fixed points then $ L^{-}(X¥backslash M)¥cap M¥neq¥phi$ .

6. Existence of Lagrange stable semi-trajectories.
In this section we point out that a Lagrange stable semi-trajectory exists

outside of but in any neighbourhood of a non-open, closed, invariant set having a
neighbourhood with compact closure. To the author’s knowledge the result in
this generality does not appear explicitly in the literature although it is known
when $M$ is a singular point of a planar dynamical system, as noted below.

Theorem 11. Let $M$ be a non-open, closed, invariant set, having a neighbour-
hood with compact closure. In any neighbourhood of $M$ there exists a Lagrange $¥cdot$

stable semi-trajectory outside $M$.
The proof follows from Theorem 1 when $M$ is positively unstable and, when

$M$ is positively stable, from the fact that there are points of $X¥backslash M$ arbitrarily
close to $M$, since $M$ is not open.

Alternatively, for continuous flows at least, the theorem is an immediate
consequence of a result of Ura and Kimura ([13], Theoreme 3).

There is an interesting corollary which we now consider.
It is well known that a point of $X$ is fixed if there is a semi-trajectory in

any punctured neighbourhood of it. See, for example, Nemytskii and Stepanov
([8], 2. 10, p. 332). As far as the author is aware, the converse, now to be
deduced, is known only for planar dynamical systems. See, for example, San-
sone and Conti ([10], Theorem 26, p. 178). Indeed Mendelson [7] has given a
sufficient condition for a fixed point of a dynamical system to have a semi-
trajectory in any punctured neighbourhood of it. This condition is now seen
to be superfluous.

Corollary. There is a semi-trajectory in any punctured neighbourhood $of^{-}$

a fixed point $x$ which is an accumulation point of $X$ and has a neighbourhood
with compact closure.

For a proof apply the theorem to $¥{x¥}$ .
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