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1. Introduction.
We shall consider a differential eq.uation

(E) $F(x, y, y^{¥prime})¥equiv P(x, y)(y^{¥prime})^{2}+2¥mathrm{Q}(x, y^{¥backslash })y^{J}+R(x, y)=0$ ,

where $y^{¥prime}=dg/dx$, and $P$, $Q$ and $R$ are polynomials in $y$ whose coefficients are
holomorphic in $x$ in a neighborhood of $x=0$. Assume that a solution $y=y(x)$

admits an essential singularity $¥omega$ at $x=0$. Then, according to a theorem of T.
Kimura [1], the solution $y(x)$ takes all complex values (other than a finite
number of possible exceptional values) in every small neighborhood of $¥omega$ . The
exceptional values are determined by $P$, $Q$ and $R$ explicitly. Let $y_{0}$ be different
from such an exceptional value. Then by virtue of Kimura’s theorem, there
exists a sequence $¥{x_{n}¥}$ such that $ x_{n}¥rightarrow¥omega$ as $ n¥rightarrow¥infty$ and $y(x_{n})=y_{0}$ for every $n$ . How-
ever, this does not mean that $y^{¥prime}(x)$ takes all possible values. In other words,
even if $p=¥varphi(x)$ is a root of $F(x, y_{0},p)=0$, there may not exist any sequence
$¥{x_{u}¥}$ such that $ x_{n}¥rightarrow¥omega$ as $ n¥rightarrow¥infty$ , $y(x_{n})=y_{0}$ and $y^{r}(x_{n})=¥varphi(x_{u})$ for every $n$ .

To illustrate such a situation, we shall consider the differential equation:

(1. 1) $x(y^{¥prime})^{2}+2yy^{¥prime}+y^{3}=0$.

If $y$ is bounded, two roots of $xp^{2}+2yp+y^{3}=0$ are

$p=¥varphi_{1}(x, y)=-x^{-1}y¥{2+¥sum_{n=1}^{¥infty}¥alpha_{n}(xy)^{n}¥}$

and

$p=¥varphi_{2}(x, y)=y^{2}¥sum_{n=1}^{¥infty}$ a$n(xy)^{n-1}$ ,

where

$(1+¥sum_{n=1}^{¥infty}¥alpha_{n}(xy)^{n})^{2}=1-xy$ .

If, for $y_{0}$ , there exists a sequence $¥{x_{n}¥}$ such that
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(1. 2) $¥left¥{¥begin{array}{l}x_{n}¥rightarrow¥omega ¥mathrm{a}¥mathrm{s}n¥rightarrow¥infty,¥¥y(x_{n})=y_{0}¥mathrm{f}¥mathrm{o}¥mathrm{r}¥mathrm{e}¥mathrm{v}¥mathrm{e}¥mathrm{r}¥mathrm{y}n,¥¥y^{¥prime}(x_{n})=¥varphi_{2}(x_{n},y_{0})¥mathrm{f}¥mathrm{o}¥mathrm{r}¥mathrm{e}¥mathrm{v}¥mathrm{e}¥mathrm{r}¥mathrm{y}n,¥end{array}¥right.$

the solution $y(x)$ must be holomorphic at $x=0$ . On the other hand, by solving
$y^{¥prime}=¥varphi_{1}(x, y)$ , we can find a solution of (1. 1) which admits an essential singu-

larity $¥omega$ at $x=0$. For this solution, the situation (1. 2) is impossible in the
neighborhood of $¥omega$ .

Let us construct another example. It can be shown that a differential equa-

tion of the form

$xz^{¥prime}=x¥{1+¥sum_{n=1}^{¥infty}a_{n}z^{2n}¥}+z^{3}$,

$a_{n}$ being constants, has a solution $z=z(x)$ which admits an ordinary transcen-

dental singularity $¥omega$ at $x=0$, and that $z(x)¥rightarrow 0$ as $ x¥rightarrow¥omega$. Furthermore, $y(x)=$

$x^{-1}z(x)$ admits an essential singularity at $¥omega$ . Keeping this remark in mind, con-

sider the equation

(1. 3) $(xy^{¥Gamma}+y-x^{2}y^{3})^{2}=1+(xy)^{2}$.

Putting $z=xy$, we derive from (1. 3) the equation

$(z^{¥prime}-x^{-1}z^{3})^{2}=1+z^{2}$ .
Let

$1+z^{2}=(1+¥sum_{n=1}^{¥infty}¥alpha_{n}z^{2n})^{2}$,

where $¥alpha_{n}$ are constants, and consider

$xz^{¥prime}=x¥{1+,¥sum_{l=1}^{¥infty}¥alpha_{n}z^{2n}¥}+z^{3}$.

As we mentioned above, this equation has a solution $z=z(x)$ which admits an
ordinary transcendental singularity $¥omega$ at $x=0$, and $z(x)¥rightarrow 0$ as $ x¥rightarrow¥omega$ . Further-
more, $y(x)=x^{-1}z(x)$ is a solution of (1. 3) which admits an essential singularity
at $¥omega$ . Note that

$xy^{¥prime}+y-x^{2}y^{3}=1+¥sum_{n=1}^{¥infty}¥alpha_{n}(xy)^{2n}$,

in the neighborhood of $¥omega$ . This means that, in the neighborhood of $¥omega$ , $y(x)$ does
not satisfy

$xy^{r}+y-x^{2}y^{3}=-1-¥sum_{n=1}^{¥infty}¥alpha_{n}(xy)^{2n}$

which is another branch of (1. 3).
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It must be clearly remarked that the solution $y(x)$ of (1. 3) which was const-

ructed above admits an essential singularity $¥omega$ at $x=0$, but $z(x)=xy(x)$ admits
an ordinary transcendental singularity at $¥omega$ . Let us call such a singularity a
singularity of calss (A). A precise definition of singularities of class (A) will be
given in Section 2. The purpose of the present work is to show that, if $¥omega$ is
not of class (A), then not only $y(x)$ but also $y^{¥prime}(x)$ take all possible values in
every neighborhood of $¥omega$ . In other words (and very roughly speaking), we claim
that, if a singularity $¥omega$ is not of class (A), then the point $(y(x), y^{¥prime}(x))$ moves
almost all over the Riemann surface $F(x, y, p)=0$ in every small neighborhood
of $¥omega$ .

2. Main theorem.

A rational function $H(x, y,p)$ in $y$ and $p$ is said to be non-constant on the
Riemann surface $F(x, y,p)=0$ for each fixed $x$ , if there is no function $a(x)$ of
$x$ such that $H(x, y,p)¥equiv a(x)$ for $F(x, y,p)=0$ . Assume that a solution $y(x)$ of
(E) admits a singularity $¥omega$ at $x=0$. The singularity $¥omega$ is said to be of class (A),

if there exists a rational function $H(x, y,p)$ in $y$ and $¥mathrm{p}$ , which is non-constant
on the Riemann surface $F(x, y,p)=0$ for each fixed $x$ and whose coefficients are
holomorphic at $x=0$, such that $H(x, y(x), y^{¥prime}(x))$ admits at most an ordinary
transcendental singularity at $¥omega$ . For example, the solution $y(x)$ of (1. 3) which
was constructed in Section 1 admits an essential singularity $¥omega$ of class (A) at
$x=0$. To see this, it is sufficient to put $H(x, y, p)=xy$. In general, if $F(x$,

$y,p)$ is irreducible with respect to $y$ and $¥mathrm{p}$ , and if $y(x)$ admits an essential $¥sin-$

gularity $¥omega$ at $x=0$ and if $y(x)$ admits only a finite number of branches around
$¥omega$ , then $¥omega$ is not of class (A). In fact, if it were of class (A), there would be
a rational function $H(x, y,p)$ in $y$ and $p$ such that

(i) its coefficients are holomorphic at $x=0$,

(ii) it is non-constant on the Riemann surface $F(x, y,p)=0$ for each fixed $x$ ,

(iii) $H(x, y(x), y^{¥prime}(x))$ admits at most an ordinary transcendental singularity
at $¥omega$ .

Since $y(x)$ admits only a finite number of branches at $¥omega$ , $H(x, y(x), y^{¥prime}(x))$ can
not admit any transcendental singularity at $¥omega$ . Put $¥lambda(x)=H(x, y(x), y^{¥prime}(x))$ .

Then

$¥lambda(x)=H(x, y, p)$

is not an identity on the surface $F(x, y,p)=0$. Let us eliminate $p$ from $¥lambda(x)=$

$H(x, y,p)$ and $F(x, y,p)=0$ to obtain a non-trivial relation $G(x, y)=0$. This is
possible, since $F$ is irreducible. It is clear that $G$ is a polynomial in $y$ whose
coefficients can not admit any transcendental singularity at $¥omega$ . However, this is
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impossible, since $y(x)$ admits an essential singularity at $¥omega$ . This proves that $¥omega$ is
not of class (A). The reasoning given above was used by J. Malmquist [3] in
his study of algebraic differential equations.

Equation (E) can be rewritten as

(E) $(P(x, y)y^{¥prime}+Q(x, y))^{2}-D(x, y)=0$ ,

where
$D(x, y)=Q(x, y)^{2}-P(x, y)R(x, y)$ .

If we assume that $P$ and $Q$ may admit poles with respect to $x$ at $x=0$, we can
assume without loss of generality that $D(0, y)¥not¥equiv 0$. Assume that $D(0, y_{0})¥neq 0$ and
let

$q=¥varphi(x, y_{0})=¥alpha(y_{0})+O(x)$ and $q=-¥varphi(x, y_{0})$

be two roots of $q^{2}=D(x, y_{0})$ , where $(¥alpha(y_{0}))^{2}=D(0, y_{0})$.

Now we can state our main theorem.
Theorem. Assume that a solution $y(x)$ of (E) admits an essential singula-

rity $¥omega$ at $x=0$ and that $¥omega$ is not of class (A). Then there exist two sequences
$¥{x_{n,1}¥}$ and $¥{x_{n,2}¥}$ such that

(2. 1) $¥left¥{¥begin{array}{l}x_{n,j}¥rightarrow¥omega asn¥rightarrow¥infty,j=¥mathrm{l},2,y(x_{n,j})=y_{0},j=1,2,¥¥P(x_{n,1},y_{0})y^{¥prime}(x_{n,1})+Q(x_{n,1},y_{0})=¥varphi(x_{n,1},y_{0}),¥¥P(x_{n,2},y_{0})y,(x_{n,2})+Q(x_{n,2},y_{0})=-¥varphi(x_{n,2},y_{0}),¥¥n=1,2,¥cdots,¥end{array}¥right.$

if $y_{0}$ is different from a finite number of exceptional values.

3. An example.
It was shown in Section 1 that, if a solution $y(x)$ of (1. 1) admits a singu-

larity $¥omega$ at $x=0$, then such a situation as (1. 2) is impossible in the neighborhood
of $¥omega$ . If the assertion of our theorem is true, then every singularity $¥omega$ at $x=0$

of a solution $y(x)$ of (1. 1) must be of class (A). In this section, we shall
prove that this is actually the case. The proof of our main theorem which will
be given in Sections 4 and 5 will be very similar to the proof given in this se-
ction.

Equation (1. 1) can be rewritten as

(3. 1) $(xy^{¥prime}+y)^{2}-(y^{2}-xy^{3})=0$ .

Let us put

$w=(y-y_{0})^{-1}(q+y_{0}¥varphi(x, y_{0}))$,

where $(x, y, ¥mathrm{g})$ satisfies
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(3. 2) $q^{2}=y^{2}-xy^{3}$

and

$¥varphi(x, y_{0})=1+¥sum_{n=1}^{¥infty}¥alpha_{n}(xy_{0})^{n}$ , $(¥varphi(x, y_{0}))^{2}=1-xy_{0}$ ,

and $¥alpha_{n}$ are constants. Note that

$w^{2}=(y-y_{0})^{-2}¥{q^{2}+2y_{0}q¥varphi(x, y_{0})+y_{0}^{2}(¥varphi(x, y_{0}))^{2}¥}$

$=(y-y_{0})^{-2}¥{y^{2}-xy^{3}+2y_{0}q¥varphi(x, y_{0})+y_{0}^{2}(¥varphi(x, y_{0}))^{2}¥}$ ,

and that $(y-y_{0})^{-2}q$ is bounded as $|y|¥rightarrow¥infty$ . Therefore, if we put

(3. 3) $v=w^{2}+xy$,

we can prove that $v$ is bounded if $(x, y, q)$ is on the surface (3. 2) and $|y|$ is
sufficiently large. Now assume that $v$ tends to infinity under the assumption
that $(x, y, q)$ is on the surface (3. 2). This means that $w$ tends to infinity, but
$y$ remains bounded. Hence $y$ tends to $y_{0}$ . Thus we get

$q=y¥varphi(x, y)$ or $q=-y¥varphi(x, y)$ .

If $q=-y¥varphi(x, y)$ , then $q+y_{0}¥varphi(x, y_{0})=O(|y-y_{0}|)$, and hence $w$ must be bounded.
Therefore, if $v$ tends to infinity, we must have $q=y¥varphi(x, y)$ and $y¥rightarrow y_{0}$ .

Now we claim that

$v(x)=H(x, y(x), y^{¥prime}(x))$,

where
$H(x, y,p)=(y-y_{0})^{-2}¥{xp+y+y_{0}¥varphi(x, y_{0})¥}^{2}+xy$ ,

is bounded in the neighborhood of $¥omega$ . Note that

$(xp+y)^{2}=y^{2}-xy^{3}$

if $y=y(x)$ and $p=y^{J}(x)$ . If $v(x)$ were not bounded in the neighborhood of $¥omega$ ,

there would be a sequence $¥{x_{n}¥}$ such that $ x_{n}¥rightarrow¥omega$ as $ n¥rightarrow¥infty$ , and $ v(x_{n})¥rightarrow¥infty$ . Then
$y(x_{n})¥rightarrow y_{0}$ and $x_{n}y^{¥prime}(x_{n})+y(x_{n})=y(x_{n})¥varphi(x_{n}, y(x_{n}))$ , or

$ x_{n}¥rightarrow¥omega$ as $ n¥rightarrow¥infty$ ,
$y(x_{n})¥rightarrow y_{0}$ as $ n¥rightarrow¥infty$,

$y^{¥prime}(x_{n})=(y(x_{n}))^{2}¥sum_{m=1}^{¥infty}¥alpha_{m}(x_{n}y(x_{n}))^{m-1}$

for $n=1,2$, $¥cdots$ .

Then $y(x)$ must be holomorphic at $¥omega$ . This is a contradiction. Therefore $v(x)$

is bounded in the neighborhood of $¥omega$ . On the other hand, it is easily shown
that $v(x)$ satisfies an algebraic differential equation. Hence by virtue of Kimu-
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$¥mathrm{r}¥mathrm{a}$ ’s theorem [1], $v(x)$ can not admit an essential singularity at $¥omega$ . This proves
that $¥omega$ is of class (A).

The construction of $H(x, y, p)$ amounts to a construction of an analytic
function on the Riemann surface $F(x, y, p)=0$ which admits a pole only at a
given point. A difficulty arises from the fact that the Riemann surface depends
on an extra parameter $x$ . We must study the behavior of such an analytic func-
tion as $x¥rightarrow 0$ . The construction given above was derived from the addition
formula for Weierstrass elliptic function $¥mathrm{p}(u)$ :

$¥mathrm{p}(u+a)=¥frac{1}{4}(¥frac{¥mathfrak{p}^{;}(u}{¥mathrm{p}(u}¥frac{)-¥mathrm{P}^{¥prime}(a)}{)-¥mathrm{P}(a)})^{2}-¥mathrm{P}(u)-¥mathrm{P}(a)$ .

Roughly speaking, by replacing $¥mathfrak{p}(u¥dagger a)$ , $¥mathrm{p}(u)$ , $¥mathfrak{p}(a)$ , $¥mathrm{p}^{r}(u)$ and $¥mathrm{P}^{¥prime}(a)$ by $v$ , $y$ , $y_{0}$ ,

$q$ and $q_{0}$ respectively, we arrive at the definition of $v(x)$ given above.
An application of such an analytic function as $H(x, y, p)$ to the study of

algebraic differential equations was made by J. Malmquist [3]. An expository
treatment of the global theory of algebraic differential equations has been given
by T. Kimura [2].

4. Proof of main theorem : Part I.
We shall prove the existence of $¥{x_{n,1}¥}$ . To do this, consider a surface de-

fined by

(4. 1) $q^{2}=D(x, y)$ .

Define $¥varphi(x, y_{0})$ in the same way as in Section 2, and put

(4. 2) $u=¥varphi(x, y_{0})+q$ ,

where $(x, y, q)$ is on the surface (4. 1). Let

(4. 3) $u^{m}=R_{m}(x, y)+S_{m}(x, y)q$ $(m=1,2, ¥cdots)$ ,

where $R_{n}$ and $S_{m}$ are polynomials in $y$ whose coefficients are holomorphic at $¥mathrm{J}$

$=0$ . We shall prove that

(4. 4) $S_{m}(0, y_{0})¥neq 0$ for $m=1,2$, $¥cdots$ .

To do this, note that at $u^{m+l}=u^{m}u$ implies

$R_{m+1}(x, y)=R_{m}(x, y)¥varphi(x, y_{0})+S_{m}(x, y)D(x, y)$ ,

$S_{m+1}(x, y)=R_{m}(x, y)+S_{m}(x, y)¥varphi(x, y_{0})$.

Hence
$R_{m+1}(0, y_{0})=R_{m}(0, y_{0})¥varphi(0, y_{0})+S_{m}(0, y_{0})D(0, y_{0})$

$=R_{m}(0, y_{0})¥varphi(0, y_{0})+S_{m}(0, y_{0})(¥varphi(0, y_{0}))^{2}$

$=¥varphi(0, y_{0})¥{R_{m}(0, y_{0})+S_{m}(0, y_{0})¥varphi(0, y_{0})¥}$
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$=¥varphi(0, y_{0})S_{m+1}(0, y_{0})$ .

Thus we obtain

$S_{m+1}(0, y_{0})=2S_{m}(0, y_{0})¥varphi(0, y_{0})$ $(m=1,2, ¥cdots)$ .

Since $S_{1}(x, y)¥equiv 1$, we can prove (4. 4) by induction.
Now let us put

(4. 5) $w=^{¥underline{u}}$

$y-y_{0}$

to obtain

(4. 6) $w^{m}=¥frac{R_{m}(x}{(y-y_{0}},)^{m}y)--+q¥frac{S_{m}(x,y)}{(y-y_{0})^{m}}$ .

The coefficient of $q$ can be written as

(4. 7) $¥frac{S_{m}(x,y)}{(y-y_{0})^{m}}=A_{m}(x, y)+¥sum_{k=1}^{m}¥frac{a_{m,k}(x)}{(y-y_{0})^{k}}$,

where $A_{m}(x, y)$ is a polynomial in $y$ whose coefficients are holomorphic in $x$ at
$x=0$, and $a_{m,k}(x)$ are holomorphic at $x=0$. It is easily seen that we have

(4. 8) $a_{m,m}(0)=S_{m}(0, y_{0})¥neq 0$ $(m=1,2, ¥cdots)$ .

Denote by $d$ the degree of $D(x, y)$ with respect to $y$ , and put

(4. 9) $g=¥left¥{¥begin{array}{l}¥frac{1}{2}d+1¥¥¥frac{1}{2}(d+1)¥end{array}¥right.$ $¥mathrm{i}¥mathrm{i}¥mathrm{f}¥mathrm{f}dd$
$¥mathrm{i}¥mathrm{i}¥mathrm{s}¥mathrm{s}$

$¥mathrm{o}¥mathrm{e}¥mathrm{v}¥mathrm{e}¥mathrm{n}¥mathrm{d}¥mathrm{d}.$

’

Then $q(y-y_{0})^{-g}$ is bounded as $y$ tends to infinity.
Observe that

$w^{g}=(y-y_{0})^{-g}R_{g}(x, y)+A_{g}(x, y)q+¥sum_{k=1}^{g}a_{g,k}(x)(y-y_{0})^{-k}q$

and

$w^{g-1}=(y-y_{0})^{-g+1}R_{g-1}(x, y)+A_{g-1}(x, y)q+¥sum_{k=1}^{g-1}a_{g-1,k}(x)(y-y_{0})^{-k}q$.

Hence

$w^{g}-(¥frac{a_{g,g-1}(x)}{a_{g-1,g-1}(x)})w^{g-1}=B_{g}(x, y)+C_{g}(x, y)q$

$+¥sum_{k=1}^{g-2}b_{k}(x)(y-y_{0})^{-k}q$

$+c(x)q(y-y_{0})^{-g}$,

where $B_{g}$ is a rational function of $y$ with holomorphic coefficients, $C_{g}$ is a po-
lynomial in $y$ with holomorphic coefficients, and $b_{k}$ and $c$ are holomorphic at $x$
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$=0$ . Note that the coefficient of $w^{g-1}$ on the left side is holomorphic at $x=0$

by virtue of (4. 8).
In this manner, we can find functions $¥mu_{1}(x)$ , $¥cdots$ , $¥mu_{g1}¥_(x)$ such that they are

holomorphic in $x$ at $x=0$ and that

$w^{g}+¥sum_{k=1}^{g-1}¥mu_{k}(x)w^{k}=A(x, y)+B(x, y)q+c(x)q(y-y_{0})^{-g}$ ,

where $A$ is a rational function of $y$ with holomorphic coefficients, and $B(x, y)$

is a polynomial in $y$ with holomorphic coefficients. Let $A(x, y)=A_{0}(x, y)+$

$O(|y|^{-1})$ , where $A_{0}$ is a polynomial in $y$ with holomorphic coefficients. Then
define a rational function $K(x, y, q)$ by

(4. 10) $K(x, y, q)=w^{g}+¥sum_{h=1}^{g-1}¥mu_{k}(x)w^{k}-A_{0}(x, y)-B(x, y)q$ .

Then, $K$ is bounded if $|y|$ is sufficiently large. Therefore, if $ K¥rightarrow¥infty$ , then $y$ is
bounded. Hence $w$ must tend to infinity. This implies that $y¥rightarrow y_{0}$ . If $|x|$ is
sufficiently small, either $q=¥varphi(x, y)$ or $q=-¥varphi(x, y)$ . If $q=-¥varphi(x, y)$ , then $u=$

$¥varphi(x, y_{0})+q=O(|y-y_{0}|)$, and hence $K$ is bounded. Therefore, if $ K¥rightarrow¥infty$ , we
must have

$y¥rightarrow y_{0}$ and $q=¥varphi(x, y)$ .

Now define a rational function $H(x, y,p)$ by

(4. 11) $H(x, y,p)=K(i,y, P(x, y)p+Q(x, y))$ ,

and put

(4. 12) $v(x)=H(x, y(x), y^{¥prime}(x))$ .

5. Proof of main theorem Part II.
We shall prove now that $v(x)$ satisfies an algebraic differential epuation. Let

(5. 1) $q(x)=P(x, y(x))y^{¥prime}(x)+Q(x, y(x))$ .

Then

(5. 2) $q^{¥prime}(x)=¥frac{1}{2}q(x)^{-1}D_{x}(x, y(x))+D_{y}(x, y(x))y^{¥prime}(x)$ ,

where $D_{x}=¥theta D/¥partial x$ and $D_{y}=¥partial D/¥theta y$ . From (5. 1) and (5. 2) we derive

(5. 3) $q^{¥prime}(x)=r(x, y(x))+s(x, y(x))q(x)$ ,

where $r(x, y)$ and $s(x, y)$ are $¥mathrm{r}¥mathrm{a}¥mathrm{t}¥mathrm{i}¥mathrm{o}¥dot{¥mathrm{n}}¥mathrm{a}1$ in $y$ with holomorphic coefficients. Let us
write $v(x)$ in the form:

(5. 4) $v(x)=V(x, y(x))+U(x, y(x))q(x)$ ,
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where $V$ and $U$ are rational in $y$ with holomorphic coefficients. Then we get

(5. 5) $v^{¥prime}(x)=W(x, y(x))+Z(x, y(x))q(x)$ ,

where $W$ and $Z$ are rational in $y$ with holomorphic coefficients. Since $(q(x))^{2}$

$=D(x, y(x))$ , by eliminating $q(x)$ , we obtain two relations

(5. 6) $F_{1}(x, v(x), y(x))=0$

and

(5. 7) $F_{2}(x, v^{l}(x), y(x))=0$ ,

where $F_{1}$ and $F_{2}$ are polynomials in $(v, y)$ and in $(v^{¥prime}, y)$ respectively and their
coefficients are holomorphic at $x=0$. Both of them are either quadratic or linear
in $v$ and $v^{¥prime}$ respectively. Hence by eliminating $y(x)$ , we obtain an algebraic
differential equation for $v(x)$ .

By virtue of Kimura’s theorem [1], $v(x)$ can not admit an essential singu-
larity at $¥omega$ if $v(x)$ is bounded. If $v(¥xi_{n})$ tend to infinity, where $¥{¥xi_{n}¥}$ is a seq-

uence such that $¥xi_{n}¥rightarrow¥omega$ as $ n¥rightarrow¥infty$ , then $y(¥xi_{n})¥rightarrow y_{0}$ as $ n¥rightarrow¥infty$, and $q(¥xi_{n})=¥varphi(¥xi_{n}$,
$y(¥xi_{n}))$ for large $¥mathrm{w}$ . Hence if $y_{0}$ is not exceptional in the sense of Kimura, we
can find a sequence $¥{x_{n}¥}$ such that

$ x_{n}¥rightarrow¥omega$ as $ n¥rightarrow¥infty$ ,
$y(x_{n})=y_{0}$ for every $¥mathrm{w}$ ,
$q(x_{n})=¥varphi(x_{n}, y_{0})$ for every $¥mathrm{w}$ ,

in the same manner as in Kimura’s paper [1]. This completes the proof of the
main theorem.
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