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1. Introduction.

We shall consider a differential equation
(E) F(x,y,y)=P(x, y)(¥')*+2Q(x, y)y'+ R(x, ) =0,

where y'=dy/dx, and P,Q and R are polynomials in y whose coefficients are
holomorphic in x in a neighborhood of x=0. Assume that a solution y=y(x)
admits an essential singularity w at x=0. Then, according to a theorem of T.
Kimura [1], the solution y(x) takes all complex values (other than a finite
number of possible exceptional values) in every small neighborhood of w. The
exceptional values are determined by P,Q and R explicitly. Let y, be different
from such an exceptional value. Then by virtue of Kimura’s theorem, there
exists a sequence {x,} such that x,—® as n—oo and y(x,) =y, for every n. How-
ever, this does not mean that y’(x) takes all possible values. In other words,
even if p=¢(x) is a root of F(x,y, p)=0, there may not exist any sequence
{x,} such that x,—w® as n—oo, y(x,)=vy, and y'(x,)=¢(x,) for every n.

To illustrate such a situation, we shall consider the differential equation :

1.1 z(y")*+2yy' +y3=0.
If y is bounded, two roots of xp?+2yp+y®*=0 are
p=¢:(x,y)= —x“ly{2+j§1wn(xy)"}
and
p=0sE, =9 3 e,
where

<1+ ;Z:_,‘l an(xy)”>2= 1—xy.

If, for y, there exists a sequence {x,} such that
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X,—>® as n—>00,
1.2) © (y(x,)=y, for every n,
¥y (x,)=0;(%,, ¥o) for every =,

the solution y(x) must be holomorphic at x=0. On the other hand, by solving
y'=¢,(x,y), we can find a solution of (1.1) which admits an essential singu-
larity ® at x=0. For this solution, the situation (1.2) is impossible in the
neighborhood of .

Let us construct another example. It can be shown that a differential equa-
tion of the form

xz’=x{1—l— by anzz"} + 28,
n=1

a, being constants, has a solution z=z(x) which admits an ordinary transcen-
dental singularity » at =0, and that z(x)—0 as x—w. Furthermore, y(x)=
27 'z(x) admits an essential singularity at . Keeping this remark in mind, con-
sider the equation

(1.3 (xy’ +y—="y*)? =1+ (xy)>
Putting z=xy, we derive from (1.3) the equation

(Z—x128)2=1+2%
Let

o 2
1+ zg=<1+ 20 an22"> R
n=1
where e, are constants, and consider
(o=
xz' = x{l—}- b3 anzz"}—l—za.
n=1

As we mentioned above, this equation has a solution z=2z(x) which admits an
ordinary transcendental singularity @ at =0, and z(x)—0 as x—w. Further-
more, y(x)=x"1z(x) is a solution of (1.3) which admits an essential singularity
at w. Note that

xy +y—atyP=1+ Elan(xy)”',
n=

in the neighborhood of . This means that, in the neighborhood of w, y(x) does
not satisfy

2y’ +y—xPyt=—-1— Z‘.lozn(xy)“
n=

which is another branch of (1.3).
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It must be clearly remarked that the solution y(x) of (1.3) which was const-
ructed above admits an essential singularity w at x=0, but 2(x)=2xy(x) admits
an ordinary transcendental singularity at @. Let us call such a singularity a
singularity of calss (A). A precise definition of singularities of class (A) will be
given in Section 2. The purpose of the present work is to show that, if o is
not of class (A), then not only y(x) but also y’(x) take all possible values in
every neighborhood of w. In other words (and very roughly speaking), we claim
that, if a singularity @ is not of class (A), then the point (y(x), ¥'(x)) moves
almost all over the Riemann surface F(x, y, p)=0 in every small neighborhood
of w.

2. Main theorem.

A rational function H(x,y,p) in y and p is said to be non-constant on the
Riemann surface F(x,y,p)=0 for each fixed x, if there is no function a(x) of
x such that H(x,y,p)=a(x) for F(x,y,p)=0. Assume that a solution y(x) of
(E) admits a singularity o at x=0. The singularity o is said to be of class (A),
if there exists a rational function H(x,y,p) in Yy and p, which is non-constant
on the Riemann surface F(x,y,p)=0 for each fixed x and whose coefficients are
holomorphic at x=0, such that H(x,y(x), y'(x)) admits at most an ordinary
transcendental singularity at o. For example, the solution y(x) of (1.3) which
was constructed in Section 1 admits an essential singularity ® of class (A) at
2=0. To see this, it is sufficient to put H(x, y, p)=xy. In general, if F(x,
y, p) is irreducible with respect to y and p, and if y(x) admits an essential sin-
gularity © at x=0 and if y(x) admits only a finite number of branches around
o, then o is not of class (A). In fact, if it were of class (A), there would be
a rational function H(x,y,p) in ¥ and p such that

(i) its coefficients are holomorphic at x=0, ‘

(ii) it is non-constant on the Riemann surface F(x, y, ) =0 for each fixed z,

(i) Hx, y(x), y'(x)) admits at most an ordinary transcendental singularity

at w.
Since y(x) admits only a finite number of branches at w, H(x, y(x), y’'(x)) can
not admit any transcendental singularity at w. Put A(x)=H(z, y(x), y’'(x)).
Then

A(x) = H(=, y, p)

is not an identity on the surface F(x,y,p)=0. Let us eliminate p from A(x)=
H(x,y,p) and F(x,y,p)=0 to obtain a non-trivial relation G(x,y)=0. This is
possible, since F is irreducible. It is clear that G is a polynomial in ¥ whose
coefficients can not admit any transcendental singularity at w. However, this is



54 ‘ Yasutaka Sisuva

impossible, since y(x) admits an essential singularity at w. This proves that o is
not of class (A). The reasoning given above was used by J. Malmquist [3] in
his study of algebraic differential equations.

Equation (E) can be rewritten as

(E) (PCx, )y’ +Q(x, ¥))*—D(x, y)=0,
where

D(x, y)=Q(x, y)*—P(x, y)R(x, y).

If we assume that P and Q may admit poles with respect to % at x=0, we can
assume without loss of generality that D(0, y)#0. Assume that D(0, y,)#0 and
let

g=0¢(x, yo) =a(y)+0(x) and g=—¢(x,y,)
be two roots of ¢2=D(x,y,), where (a(y,))2=D(0, y,).

Now we can state our main theorem.

Theorem. Assume that a solution y(x) of (E) admits an essential singula-
rity @ at x=0 and that w is not of class (A). Then there exist two sequences
{x,,1} and {x,} such that

Xp,;—0 as n—o, j=1,2, y(x, ;)=y, j=12,
P(xn,ly y0>y,(xn,l>+Q(xn,l» yO) :(p(xn,l, ?/o)»

P(xy,9, Y)Y (X ,2) + R (X2, Yo) = — P(Xn,2, Yo),
n:l’ 2’ LN

2.D

if Yo is different from a finite number of exceptional values.

3. An example.

It was shown in Section 1 that, if a solution y(2) of (1.1) admits a singu-
larity w at x=0, then such a situation as (1.2) is impossible in the neighborhood
of w. If the assertion of our theorem is true, then every singularity w at =0
of a solution y(x) of (1.1) must be of class (A). In this section, we shall
prove that this is actually the case. The proof of our main theorem which will
be given in Sections 4 and 5 will be very similar to the proof given in this se-
ction.

Equation (1.1) can be rewritten as
G.1D @y’ +y)*— (y*—2y®) =0.
Let us put

w= (Y —Yo) g+ yeP(x, ¥0)),

where (x,y, q) satisfies
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3.2) =y —xy?

and

0, yo) = 1+§1 a(xy)™, (@, yo))?=1—1y,,

and «, are constants. Note that

w*=(Y—y0) e +29099 (%, ¥o) +96(# (2, ¥))?}
=Y —Y0) *{Y*—2y* +290q¥ (%, ¥o) + (¢ (x, )%,
and that (y—y,) 2¢ is bounded as |y|—>co. Therefore, if we put
3.3 v=w?+2y,

we can prove that » is bounded if (x, y, ¢) is on the surface (3.2) and |y| is
sufficiently large. Now assume that » tends to infinity under the assumption
that (x,y,q) is on the surface (3.2). This means that w tends to infinity, but
y remains bounded. Hence y tends to y,. Thus we get

q=y¥(x,y) or g=—yp(x,y).

If g=—yp(x,y), then gq+y@(%, y5) =0(ly—yo|), and hence w must be bounded.
Therefore, if v tends to infinity, we must have ¢g=y¢(x,y) and y—yL,.
Now we claim that

- v(@)=H(x, y(2), y'(x)),
where
H(x,y,p) =@~y {xp+y+yP (%, yo)} 2 +xy,
is bounded in the neighborhood of w. Note that
@p+y)’=y*—xy®

if y=y(x) and p=9'(x). If v(x) were not bounded in the neighborhood of w,
there would be a sequence {x,} such that x,—® as n—oo, and v(x,)—occ. Then

y(x,)—yo and x,y'(x,) +y(x,) =y (x,)¢(x,, y(x,)), or
X,—® .aS n—>0,

y(x,)—>Y, as n—>co,
y'(x,)=C (xn))2m2=1wm(xny(xn))m“
for n=1,2,---.

Then y(x) must be holomorphic at w. This is a contradiction. Therefore v(x)
is bounded in the neighborhood of w. On the other hand, it is easily shown
that »(x) satisfies an algebraic differential equation. Hence by virtue of Kimu-
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ra’s theorem [1], »(x) can not admit an essential singularity at . This proves
that o is of class (A).

The construction of H(x, y, p) amounts to a construction of an analytic
function on the Riemann surface F(x, y, ) =0 which admits a pole only at a
given point. A difficulty arises from the fact that the Riemann surface depends
on an extra parameter x. We must study the behavior of such an analytic func-
tion as x—0. The construction given above was derived from the addition
formula for Weierstrass elliptic function p(z) :

Y@@ —y'(a)
p(u) —p(a)

Roughly speaking, by replacing p(z+a), p(w), p(a), ¥'(») and §'(a) by », ¥, ¥
g and ¢, respectively, we arrive at the definition of »(x) given above.

putar=+( ) e —p(@.

An application of such an analytic function as H(®, y, p) to the study of
algebraic differential equations was made by J. Malmquist [3]. An expository
treatment of the global theory of algebraic differential equations has been given
by T.Kimura [2].

4. Proof of main theorem : Part I.
We shall prove the existence of {x,,;}. To do this, consider a surface de-

fined by

(CH)) ¢*=D(x, ¥).

Define ¢(x,y,) in the same way as in Section 2, and put
(4.2) u=¢(x, Yo)+q,

where (x,%,q) is on the surface (4.1). Let
4.3 . wu”=R,, (%, y)+Sn(x,¥)g (m=12,--),

where R,, and S,, are polynomials in ¥ whose coefficients are holomorphic at x
=0. We shall prove that

(4.4) S,.(0, yo) #0 for m=1,2,---.
To do this, note that at #”*'=u"u implies

Rm+1(x) y) :Rm(x) y)(0(x$ '!/o) +Sm<x, ?/)D(x’ y),
Sm+1(x) ?/) :Rm<x) y)+Sm(x, y)(p(xy yo)-

Hence ,
R,+1(0, ¥o) = R, (0, ¥0)9 (0, %) +S,,(0, y) D (0, ¥o)

=R (0, Yy0)?(0, o) + S0, ¥0) (#(0, ¥0))?
:(p(o’ yO) {Rm(09 ?/0) +Sm(0) yO)qo(O’ yO)}
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=¢(0, ¥0)Sm+1(0, ¥o).

Thus we obtain

Sm+1(0) yO)r'sz(Os ?/0)(0(0, yO) (m:l, 2’ t '>'

Since S,(x,y)=1, we can prove (4.4) by induction.
Now let us put

u
4.5 _
“ v Y—Y%o
to obtain
(4.6) R ACH DR C )

T -y T y—yom

The coeflicient of g can be written as -

“@.7

Su(x,¥) 7 A, (X)
Y—yo)™ =An(@ D+ 2 Y—yo)*’

57

where A,,(x,y) is a polynomial in y whose coefficients are holomorphic in x at

z=0, and a,,;(x) are holomorphic at x=0. It is easily seen that we have

mym(0) =5m(0, ¥)#0  (m=1,2,---).

4.8

Denote by d the degree of D(x,y) with respect to ¥, and put

4.9

% d+1 if d is even,
9= 1
5 @+D i dis odd.

Then q(y—¥,)7? is bounded as y tends to infinity.

Observe that

and

Hence

wg___( aQ,U_l(x)

w9=(Y—o) R, (&, y) + A, (2, y>q+kzi11 g 1) Y~y *q

g—1
Wil =(y—yo) TR, (x, )+ A, (®, Y)g+ kglag—l,k(x) (W—yo)*q.

9-1=PB (zx, C,(x,
ag—l,y-l(x)>w 5(% ¥)+Co(x, 9)g

+i§bk(x) (Y—y0)*q

+c(@)q(y—yo) 79,

where B, is a rational function of y with holomorphic coefficients, C, is a po-
lynomial in y with holomorphic coefficients, and &, and ¢ are holomorphic at x
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=0. Note that the coefficient of w®! on the left side is holomorphic at x=0
by virtue of (4.8). :

In this manner, we can find functions x,(%), - -, #,-1(x) such that they are
holomorphic in z at x=0 and that

w+§1 ux(aywk= Az, ¥)+ B, 1)g+ (g —1o)~?,

where A is a rational function of y with holomorphic coefficients, and B(x, )
is a polynomial in y with holomorphic coefficients. Let A(x, y)=A,(x, y) +
O(Jy|™), where A, is a polynomial in y with holomorphic coefficients. Then
define a rational function K(z,y,q) by

A1) Ky @ =wit 5 m@et— A, 1)~ B

Then, K is bounded if |y| is sufficiently large. Therefore, if K—oco, then ¥ is
bounded. Hence w must tend to infinity. This implies that y—y, If |x] is
sufficiently small, either ¢=¢(x, ¥) or g=—¢(x, v). If g=—¢(x, ¥), then u=
e(x, ¥o) +¢=0(ly—v,|), and hence K is bounded. Therefore, if K—>co, we
must have

y—Y, and g=¢(x, y).

Now define a rational function H(x,y, p) by

(4.1D H(x,y,p)=K(, y, P(x, y)p+Q(x, ¥)),
and put
(4.12) v(x)=H(x, y(x), y'(x)).

5. Proof of main theorem : Part II.
We shall prove now that v(x) satisfies an algebraic differential epuation. Let

G.D q(x)=P(x, y(x))y' (@) +Q(x, y(x)).
Then
5.2 q' (@) =%q(x)“Dx(x, y(@))+Dy(ax, y(x))y' (),
where D,=0D/dx and D,=8D/dy. From (5.1) and (5.2) we derive
(5.3) ¢’ () =r(x, y(@))+s(x, y(¥))g(x),

where r(x,y) and s(x,y) are rational in y with holomorphic coefficients. Let us
write »(x) in the form :

(5.4 v(@)=V(z, y(*))+ Uz, y(x))q(x),
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where V and U are rational in y with holomorphic coefficients. Then we get
(6.5) v'(@)=W(x, y(2))+Z(x, y(x))gq(x),

where W and Z are rational in y with holomorphic coefficients. Since (g(x))?
=D(z,y(x)), by eliminating g(x), we obtain two relations

(5.6) Fi(x,v(x), y(x))=0
and /
5.7 Fy(a, o' (x), y(x)) =0,

where F; and F, are polynomials in (v, ¥) and in (v, y) respectively and their
coefficients are holomorphic at x=0. Both of them are either quadratic or linear
in v and v’ respectively. Hence by eliminating y(x), we obtain an algebraic
differential equation for »(x).

By virtue of Kimura’s theorem [1], »(x) can not admit an essential singu-
larity at o if v(x) is bounded. If »(§,) tend to infinity, where {£,} is a seq-
uence such that &,—w as n—oo, then y(§,)—y, as n—oo, and q(£,)=¢(,,
y(&,)) for large n. Hence if y, is not exceptional in the sense of Kimura, we
can find a sequence {x,} such that

X,—>w®W as n—> o0,
y(x,)=y, for every =,
q(x,)=9¢(x,,y,) {for every =,

in the same manner as in Kimura’s paper [1]. This completes the proof of the
main theorem.

References

[1] T.Kimura, Sur les points singuliers des équations différentielles ordinaires du
premier ordre, Comment. Math. Univ. St. Paul, 2 (1954) 47-53. ,

[2]1 T.Kimura, On the global theory of algebraic differential equations, Proc. U.S.-
Japan Seminar on Differential and Functional Equations, pp181-197, Benjamin,
1967.

{31 J.Malmquist, Sur les fonctions & un nombre fini de branches satisfaisant i une
équation différentielle du premier ordre, Acta Math. 74 (1941), 175-196.

(Ricevita la 12-an de decembro, 1969)



	1. Introduction.
	2. Main theorem.
	3. An example.
	4. Proof of main theorem : Part I.
	5. Proof of main theorem Part II.
	References

