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A Continuous Differential Equation in
Hilbert Space without Existence

By James $¥mathrm{A}$ , $¥mathrm{Y}¥circ ¥mathrm{R}¥mathrm{K}¥mathrm{E}^{*)}$

(University of Maryland)

Let $B$ be a Banach space and let $F:R¥times B¥rightarrow B$ be continuous. It is known
that if either $B$ is finite dimensional or if $F$ satisfies a Lipschitz condition,
then for each $(t_{0}, x_{0})¥in R¥times B$ there exists a $C^{1}$ function $x(t)$ with values in
$B$ defined for $t$ in an interval neighborhood of $I¥subset R$ of $t_{0}$ such that $x(t_{0})=x_{0}$

and

(1) $¥dot{x}(t)=F(t,x(t))$ , ( $‘‘$ . ” means $‘‘¥frac{d}{dt},,$).

Dieudonne [1], [2], gave a very simple example where $B=(c_{0})$ , (the space of
real-valued sequences $x=(x_{1},x_{2^{ }},¥cdots)$ with $x_{n}¥rightarrow 0$ as $¥tau¥iota¥rightarrow¥infty$ , where $||x||_{c_{0}}=¥sup|x_{n}|$ ).

$n$

He points out that for $x=(x_{1},x_{2^{ }},¥cdots)$ , if the $n^{¥mathrm{t}¥mathrm{h}}$ coordinate of $F(x)$ is $|x_{n}|^{1/2}+n^{-1}$ ,
then $F$ is continuous in $(c_{0})$ and there exists no solution $x(t)$ in $(c_{0})$ such that
$x(0)=(0)$ . Actually his equation has no solutions at $alf$ in $(c_{0})$ ; the $n^{¥mathrm{t}¥mathrm{h}}$ coordi-
nate $x_{n}$ satisfies the one dimensional equation $¥dot{x}_{n}=|x_{n}|^{1/2}+n^{-1}$, the solution of
which is increasing more rapidly than the maximal solution of $¥dot{r}=|r|^{1/2}$, with
initial condition $r(t_{0})=x_{n}(t_{0})$ , ([3], p. 25, see proof of Lemma 2. 1). $¥mathrm{H}$ for
some $t_{0},¥lim_{n¥rightarrow¥infty}x_{n}(t_{0})=0$ , then

(2) $¥lim_{n¥rightarrow¥infty}x_{n}(t_{0}+¥tau)=$ (sign $¥tau$) $¥tau^{2}/4$, $¥mathrm{t}_{0}+¥tau¥in ¥mathrm{d}¥mathrm{o}¥mathrm{m}¥mathrm{a}¥mathrm{i}¥mathrm{n}$ $x$ ;

that is, if $x(t_{0})¥in(c_{0})$ , then $x(t+¥tau)¥not¥in(c_{0})$ , (unless $¥tau=0$). This example seems to
depend strongly on the properties of $(c_{0})$ (which is not reflexive). See Remark
(ii). As far as I know, no example has been published even where $B$ is a Hilbert
space. I now give such an example with no solution such that $x(0)=0$.

Let $H$ be the Hilbert space of sequences of real numbers, $y=(y_{1}, y_{2^{ }},¥cdots)$ ,

such that $||y||^{2}=¥sum y^{2}i$ . Let $P_{n}$ be the projections given by $P_{n}(y)=(0,$ $¥cdots$ , 0, $y_{n+1}$ ,

$y_{n+2}$ , $¥cdots)$ , $n=1,2$ , $¥cdots$ and $P_{0}(y)=y$ . For $t¥in R$ , $y¥in H$, define

$P(t)y=¥left¥{¥begin{array}{l}0¥mathrm{f}¥mathrm{o}¥mathrm{r}t¥leqq 0,¥¥y¥mathrm{f}¥mathrm{o}¥mathrm{r}t¥geqq ¥mathrm{l},¥¥(2-2^{n}t)P_{n}y¥perp|(2^{n}t-1)P_{n-1}y¥mathrm{f}¥mathrm{o}¥mathrm{r}t¥in[2^{-n},2^{-n+1}],n=1,2,¥cdots.¥end{array}¥right.$

$*)$ This research was partially supported by National Science Foundation Grant NSF-
GP-9347.
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Claim. $P$ is continuous on $R¥times H$. $P$ is clearly continuous at $(t, x)$ if $t¥neq 0$ .

For continuity at $(0, x)$ , let $t_{i}¥rightarrow 0$ and let $y_{i}$ be a sequence of points in $H$ with
$y_{i}¥rightarrow x$ . Write $y_{i}=(y_{i1}, y_{i2^{ }},¥cdots)$ . Then for each $n$

$||P(t_{i})y_{i}||^{2}¥leqq¥sum_{j=n}^{¥infty}y^{2}ij$ for $t_{i}¥leqq 2^{-n+1}$, and $¥lim_{i¥rightarrow¥infty}¥sup||P(t_{i})y_{i}||¥leqq¥sum_{j=n}^{¥infty}¥dot{x}_{j}^{2}$ .

$¥mathrm{S}¥mathrm{i}¥mathrm{n}¥mathrm{c}¥mathrm{e}¥sum_{j=n}^{¥infty}x_{i^{2}}$ can be made as close to 0 as desired by choosing $n$ large,
$¥lim$

$¥mathrm{s}¥mathrm{u}¥mathrm{p}¥mathrm{i}¥rightarrow¥infty$ $||P(t_{i})y_{i}||=0$, proving the claim Let

$G(y)=y||y||^{-1/2}$ for $y¥neq 0$ and $G(0)=0$.

Define $A(y)=$ $(|y_{1}|,|y_{2}|, ¥cdots)$ , and let $v=(2^{-1},2^{-2},2^{-3_{ }},¥cdots)$ and

$F(t, y)=G(P(t)A(y))+P(t/2)v¥max¥{0,4^{-1}t^{2}-||y||¥}$ .

Note that $F:R¥times H¥rightarrow H$ is continuous. Write $F=(F_{1}, F_{2^{ }},¥cdots)$ .

Claim. There is no solution $x(¥cdot)$ of (1), whose domain I is an open interval
containing 0, such that $x(0)=0$. We now suppose the contrary ; assume that
$x(¥cdot)$ is such a solution. Write $x(t)=(x_{1}(t), ¥cdots)$ . Since $P(t)=0$ for $t¥leqq 0$, we
have $x(t)=0$ for $t¥leqq 0$ . From the definition of $A(¥cdot)$ , $F_{n}(t, y)¥geqq 0$ for all $t$ , $y$ and
$n$ , so each $x_{n}(t)$ is non-decreasing and $x_{n}(t)¥geqq 0$ for $t¥in L$ so $A(x(t))=x(t)$ ;
also $F(t,0)=4^{-1}t^{2}P(t/2)v¥neq 0$ for $t>0$, so $x(t)¥neq 0$ for $t>0$ . For $n=1,2$, $¥cdots$ and
$t¥leqq 2^{-n}$ , $F_{n}(t, y)¥equiv 0$ and $¥dot{x}_{n}(t)¥equiv 0$ , so $x_{n}(t)=0$ for $t¥leqq 2^{-n}$ .

Now write $¥gamma(t)=||x(t)||^{1/2}$ . Then for our solution $x(¥cdot)$ , $¥tau$ is continuous and
for each $n$ ,

$i_{n}(t)=¥frac{(2^{n}t-1)x_{n}(t)}{¥gamma(t)}$ for $t¥in[2^{-n}, 2^{-n+1}];x_{n}(2^{-n})=0$.

Hence on $[2^{-n}, 2^{-n+1}]$ the coordinate $x_{n}$ must be 0 ; therefore, for all $t$ , $P(t)$ .

$A(x(t))=x(t)$ . Let $¥rho(t)=||x(t)||^{2}$ . Then letting $¥langle x, y¥rangle=¥sum x_{i}y_{i}$,

(3) $¥frac{d}{dt}¥rho(t)=2¥langle x(t),¥dot{x}(t)¥rangle=2||x(t)||^{3/2}+2¥langle x(t), v¥rangle¥max¥{, ¥}$

$¥geqq 2||x(t)||^{3/2}=2¥rho^{3/4}(t)$ $t>0$, $t¥in L$

Then $¥rho(t))¥geqq(t/2)^{4}$ for $t>0$, $||x(t)||¥geqq t^{2}/4$ for $t¥geqq 0$ , and $¥max¥{0, t^{2}/4-||x(t)||¥}=0$ .
Hence our particular solution $x(t)$ satisfies (for $t¥in I$)

$¥dot{x}(t)=x(t)||x(t)||^{-1/2}$ , $t>0$ ; that is,

(4) $i_{n}(t)=x_{n}(t)¥rho(t)^{-1/4}$ , $x_{n}(2^{-n})=0$ , for $n=1,2$, $¥cdots$ ; $t>0$ .

The solution of (4) for each $n$ (for any continuous scalar function $¥rho(t)>0$) is
$x_{n}(t)¥equiv 0$ ; Hence $x(t)¥equiv 0$ , contradicting our earlier result. Therefore no solution
$x(t)$ can exist with $x(0)=0$.

Remarks. (i) This example can be extended to many Banach spaces, in-
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eluding Banach spaces of sequences of real numbers, such as $¥ell_{p}$ , $ 1¥leqq p¥leqq¥infty$ , in
which $‘‘||(x_{1},x_{2^{ }},¥cdots)||¥leqq||(y_{1},y_{2^{ }},¥cdots)||$ ” is implied by “

$|x_{n}|¥leqq|y_{n}|$ for all $n‘‘$ . This
fact (not the existence of an inner product) is needed to guarantee (3) $¥dot{¥rho}¥geqq 2¥rho^{3/4}$

for almost all $t¥in I$. Note that $¥rho$ is absolutely continuous. For $x¥in¥ell_{p}$ , $F$ is contin-
uous without any changes and there is no solution with $x(0)=0$ .

(ii) Although $(c_{0})$ is complete, its unit ball is not compact in the weak topo-
logy induced by its dual, which is $¥ell_{1}$ . The dual of $¥ell_{1}$ is $¥ell¥infty$ (which contains $(c_{0})$ ).
Dieudonne’s equation is also defined on $¥ell¥infty$ , and since there exists no continuous
projection of $¥ell¥infty$ onto $(c_{0})$ , there is no obvious way to restrict his equation to
only $(c_{0})$ . Curiously, Dieudonne’s equation has a solution in $¥ell¥infty$ (for any initial
$x(0)$ in $(c_{0})$ or even in $¥ell_{¥infty}$ ), and for each $x¥in(c_{0})$ and each $t$ , $x(t)¥mathrm{j}¥mathrm{s}$ the weak
limit of a sequence in $(c_{0})$ . Since $H$ is reflexive, its unit ball is weakly com-

pact, so no analogous problems arise in the example presented here.
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