A Continuous Differential Equation in Hilbert Space without Existence

By James A, YORKE*)

(University of Maryland)

Let B be a Banach space and let $F: R \times B \rightarrow B$ be continuous. It is known that if either B is finite dimensional or if F satisfies a Lipschitz condition, then for each $(t_0, x_0) \in R \times B$ there exists a C^1 function x(t) with values in B defined for t in an interval neighborhood of $I \subset R$ of t_0 such that $x(t_0) = x_0$ and

(1)
$$\dot{x}(t) = F(t, x(t)), \quad ("\cdot" \text{ means } "\frac{d}{dt}").$$

Dieudonné [1], [2], gave a very simple example where $B = (c_0)$, (the space of real-valued sequences $x = (x_1, x_2, \cdots)$ with $x_n \to 0$ as $n \to \infty$, where $||x||_{c_0} = \sup_n |x_n|$). He points out that for $x = (x_1, x_2, \cdots)$, if the n^{th} coordinate of F(x) is $|x_n|^{1/2} + n^{-1}$, then F is continuous in (c_0) and there exists no solution x(t) in (c_0) such that x(0) = (0). Actually his equation has no solutions at all in (c_0) ; the n^{th} coordinate x_n satisfies the one dimensional equation $\dot{x}_n = |x_n|^{1/2} + n^{-1}$, the solution of which is increasing more rapidly than the maximal solution of $\dot{r} = |r|^{1/2}$, with initial condition $r(t_0) = x_n(t_0)$, ([3], p. 25, see proof of Lemma 2.1). If for some t_0 , $\lim x_n(t_0) = 0$, then

(2)
$$\lim_{n\to\infty} x_n(t_0+\tau) = (\text{sign } \tau)\tau^2/4, \ t_0+\tau \in \text{domain } x;$$

that is, if $x(t_0) \in (c_0)$, then $x(t+\tau) \in (c_0)$, (unless $\tau=0$). This example seems to depend strongly on the properties of (c_0) (which is not reflexive). See Remark (ii). As far as I know, no example has been published even where B is a Hilbert space. I now give such an example with no solution such that x(0)=0.

Let *H* be the Hilbert space of sequences of real numbers, $y=(y_1, y_2, \cdots)$, such that $||y||^2 = \sum y_i^2$. Let P_n be the projections given by $P_n(y) = (0, \cdots, 0, y_{n+1}, y_{n+2}, \cdots)$, $n=1, 2, \cdots$ and $P_0(y)=y$. For $t \in R, y \in H$, define

$$P(t)y = \begin{cases} 0 & \text{for } t \leq 0, \\ y & \text{for } t \geq 1, \\ (2-2^{n}t)P_{n}y + (2^{n}t-1)P_{n-1}y & \text{for } t \in [2^{-n}, 2^{-n+1}], n = 1, 2, \cdots. \end{cases}$$

*) This research was partially supported by National Science Foundation Grant NSF-GP-9347.

Claim. P is continuous on $R \times H$. P is clearly continuous at (t, x) if $t \neq 0$. For continuity at (0, x), let $t_i \rightarrow 0$ and let y_i be a sequence of points in H with $y_i \rightarrow x$. Write $y_i = (y_{i1}, y_{i2}, \cdots)$. Then for each n

$$||P(t_i)y_i||^2 \leq \sum_{j=n}^{\infty} y_{ij}^2 \quad \text{for } t_i \leq 2^{-n+1}, \text{ and } \limsup_{i \to \infty} ||P(t_i)y_i|| \leq \sum_{j=n}^{\infty} x_j^2.$$

Since $\sum_{j=n}^{\infty} x_i^2$ can be made as close to 0 as desired by choosing *n* large, lim $\sup_{i\to\infty} ||P(t_i)y_i||=0$, proving the claim Let

$$G(y) = y ||y||^{-1/2}$$
 for $y \neq 0$ and $G(0) = 0$.

Define $A(y) = (|y_1|, |y_2|, \cdots)$, and let $v = (2^{-1}, 2^{-2}, 2^{-3}, \cdots)$ and

$$F(t, y) = G(P(t)A(y)) + P(t/2)v \max \{0, 4^{-1}t^2 - ||y||\}.$$

Note that $F: R \times H \rightarrow H$ is continuous. Write $F = (F_1, F_2, \cdots)$.

Claim. There is no solution $x(\cdot)$ of (1), whose domain I is an open interval containing 0, such that x(0)=0. We now suppose the contrary; assume that $x(\cdot)$ is such a solution. Write $x(t)=(x_1(t),\cdots)$. Since P(t)=0 for $t\leq 0$, we have x(t)=0 for $t\leq 0$. From the definition of $A(\cdot)$, $F_n(t,y)\geq 0$ for all t, y and n, so each $x_n(t)$ is non-decreasing and $x_n(t)\geq 0$ for $t\in I$, so A(x(t))=x(t); also $F(t,0)=4^{-1}t^2P(t/2)v\neq 0$ for t>0, so $x(t)\neq 0$ for t>0. For $n=1, 2, \cdots$ and $t\leq 2^{-n}$, $F_n(t,y)\equiv 0$ and $\dot{x}_n(t)\equiv 0$, so $x_n(t)=0$ for $t\leq 2^{-n}$.

Now write $\gamma(t) = ||x(t)||^{1/2}$. Then for our solution $x(\cdot)$, γ is continuous and for each n,

$$\dot{x}_n(t) = \frac{(2^n t - 1)x_n(t)}{\gamma(t)}$$
 for $t \in [2^{-n}, 2^{-n+1}]; x_n(2^{-n}) = 0.$

Hence on $[2^{-n}, 2^{-n+1}]$ the coordinate x_n must be 0; therefore, for all $t, P(t) \cdot A(x(t)) = x(t)$. Let $\rho(t) = ||x(t)||^2$. Then letting $\langle x, y \rangle = \sum x_i y_i$,

(3)
$$\frac{d}{dt}\rho(t) = 2\langle x(t), \dot{x}(t) \rangle = 2||x(t)||^{3/2} + 2\langle x(t), v \rangle \max\{,\} \\ \ge 2||x(t)||^{3/2} = 2\rho^{3/4}(t) \quad t > 0, \ t \in I.$$

Then $\rho(t) \ge (t/2)^4$ for t > 0, $||x(t)|| \ge t^2/4$ for $t \ge 0$, and $\max\{0, t^2/4 - ||x(t)||\} = 0$. Hence our particular solution x(t) satisfies (for $t \in I$)

 $\dot{x}(t) = x(t) ||x(t)||^{-1/2}$, t > 0; that is,

(4)
$$\dot{x}_n(t) = x_n(t)\rho(t)^{-1/4}, \ x_n(2^{-n}) = 0, \text{ for } n = 1, 2, \dots; t > 0.$$

The solution of (4) for each *n* (for any continuous scalar function $\rho(t)>0$) is $x_n(t)\equiv 0$; hence $x(t)\equiv 0$, contradicting our earlier result. Therefore no solution x(t) can exist with x(0)=0.

Remarks. (i) This example can be extended to many Banach spaces, in-

cluding Banach spaces of sequences of real numbers, such as ℓ_p , $1 \le p \le \infty$, in which " $||(x_1, x_2, \cdots)|| \le ||(y_1, y_2, \cdots)||$ " is implied by " $|x_n| \le |y_n|$ for all n". This fact (not the existence of an inner product) is needed to guarantee (3) $\dot{\rho} \ge 2\rho^{3/4}$ for almost all $t \in I$. Note that ρ is absolutely continuous. For $x \in \ell_p$, F is continuous without any changes and there is no solution with x(0)=0.

(ii) Although (c_0) is complete, its unit ball is not compact in the weak topology induced by its dual, which is ℓ_1 . The dual of ℓ_1 is ℓ_{∞} (which contains (c_0)). Dieudonné's equation is also defined on ℓ_{∞} , and since there exists no continuous projection of ℓ_{∞} onto (c_0) , there is no obvious way to restrict his equation to only (c_0) . Curiously, Dieudonné's equation has a solution in ℓ_{∞} (for any initial x(0) in (c_0) or even in ℓ_{∞}), and for each $x \in (c_0)$ and each t, x(t) is the weak limit of a sequence in (c_0) . Since H is reflexive, its unit ball is weakly compact, so no analogous problems arise in the example presented here.

Bibliography

- [1] J. Dieudonné, Foundation of Modern Analysis, Academic Press, New York, 1960, see p. 287, in first edition.
- [2] J. Dieudonné, Deux exemples singuliers d'équations différentielles, Acta Scien. Math. (Szeged) 12(1950), B 38-40.

[3] P. Hartman, Ordinary Differential Equations, Wiley, New York, 1964.

(Ricevita la 23-an de junio, 1969)