
Funkcialaj Ekvacioj, 12 (1969), 193-203

On a Compact Invariant Set Isolated from
Minimal Sets

By Tosiya SAITO

{University of Tokyo and University of Warwick)
Dedicated to Professor Tokui Sato on the Occasion of His Retirement

1. Introduction and preliminaries.
Let a dynamical system $(X, R, ¥pi)$ be given where:

1) $X$ is a locally compact metric space,
2) $R$ is the group of real numbers,
3) $¥pi$ is a continuous map of $X¥times R$ onto $X$ :

$¥pi$

$(x, t)¥rightarrow¥pi(x, t)$ , $x¥in X$, $t¥in R$ , $¥pi(x, t)¥in X$,

such that
(i) $¥pi(x, 0)=x$ ,

(ii) $¥pi(¥pi(x, s), t)=¥pi(x, s+t)$ ,

$x¥in X$, $s$ , $t¥in R$ .

The following notation will be used throughout the paper:
(1) $C^{+}(x)$ is the positive half-orbit from $x¥in X$,

(2) $C^{-}(x)$ is the negative half-orbit from $x¥in X$,

(3) $C(x)=C^{+}(x)¥cup C^{-}(x)$ ,

(4) $L^{+}(x)$ is the $o$)-lirnit set of $x$ ,

(5) $L^{-}(x)$ is the $a$-limit set $¥mathrm{o}¥mathrm{i}$

$x$ ,

(6) $J^{+}(x)$ is the positive prolongationaJ limit set $1$ ) of $x$ ,

(7) $J^{-}(x)$ is the negative prolongational limit set of $x$ .
Let $F$ be a compact invariant set of our dynamical system and $U$ be a

neighbourhood of $F$. The purpose of the present paper is to investigate the
behaviour of orbits passing through $¥overline{U}-F$ and thereby to characterize the nature
of $F$. For that purpose, we divide $¥overline{U}-F$ into following subsets:

$G_{U}=[x;x¥in¥overline{U}-F, C^{+}(x)¥not¥subset¥overline{U}, C^{-}(x)¥mathrm{c}[¥overline{U}]$,
$N^{+}U=[x;x¥in¥overline{U}-F, C^{+}(x)¥subset¥overline{U}]$ ,

$N^{-}U=[x;x¥in¥overline{U}-F, C^{-}(x)¥subset¥overline{U}]$ ,

$N_{U}=N_{U}^{+}¥cap N_{U}^{-}$ ,

so that

1) For the definition of the prolongational limit set, see [2], p. 122.
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$¥overline{U}-F=G_{U}¥cup N^{+}U¥cup N^{-}U$ ,

$ G_{U}¥cap N^{+}U=¥phi$ , $ G_{U}¥cap N^{-}U=¥phi$ .

As is evident from the definition, $G_{U}$ is open and $N^{+}U$, $N^{-}U$ and $N_{U}$ are
closed in $¥overline{U}-F$.

The idea of dividing $¥overline{U}-F$ into these subsets has its origin in Bendixson’s
famous $¥mathrm{m}¥mathrm{e}¥mathrm{m}¥mathrm{o}¥mathrm{i}¥mathrm{r}^{2)}$ , where he used it successfully for the study of isolated criti-
cal points of a dynamical system in $S^{2}$ . The above definition is its natural
extension. In my previous $¥mathrm{p}¥mathrm{a}¥mathrm{p}¥mathrm{e}¥mathrm{r}^{3)}$ , I introduced this definition for the purpose
of studying the isolated compact minimal sets. However the same idea works
for the study of compact invariant sets as well, and, in certain points at least,
the assumption of minimality adopted in my paper seems to be rather too strin-
gent and sometimes even superfluous. Indeed, some of the results obtained
there admit immediate generalization to the case when $F$ is a compact invariant
set not necessarily minimal after a slight modification. So let us begin with
the generalization of some of those theorems and then use them for the further
study of compact invariant sets.

2. Fundamental theorems on a saddle set.
Throughout the paper we assume that $F$ is a compact and non-open invariant

set isolated from minimal sets. Here the isolatedness is defined as follows:
Definition 1. $F$ is said to be isolated from minimal sets if and only if

there exists a neighbourhood $U$ of $F$ such that any minimal set contained in $U$

is a subset of $F$.
This assumption, together with the local compactness of $X$, will ensure the

existence of a compact neighbourhood $D$ of $F$ such that any minimal set con-
tained in $D$ is a subset of $F$. As neighbourhoods of $F$ for which the sets $G$ ,
$N^{+}$ , $N^{-}$ and $N$ are considered, we consider only those contained in $D$. So, for
any neighbourhood $U$ of $F$ considered here, we assume that

(i) $U$ is relatively compact, and
(ii) $¥overline{U}$ contains no minimal sets except those contained in $F$,

without any further notice.
From those assumptions on $U$, it follows immediately that any closed in-

variant set in $¥overline{U}$ intersects $F$. Indeed, if $M$ is such a closed invariant set, $M$

is compact by (i). So $M$ contains at least one minimal set which should
necessarily be a subset of $F$ by (ii). Hence $ M¥cap F¥neq¥phi$ .

From this remark, we obtain:

2) [1].
3) [3].
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Theorem 1. (1) If $x¥in N^{+}U$ , $ L^{+}(x)¥cap F¥neq¥phi$ .

(2) If $x¥in N^{-}U$ , $¥prime L^{-}(x)¥cap F¥neq¥phi$ .

In our terminology, the definition of a saddle set, introduced by Seibert
and $¥mathrm{U}¥mathrm{r}¥mathrm{a}^{4)}$ , can be stated as follows:

Definition 2. $F$ is called a saddle set if there exists a neighbourhood $U$ of
$F$ such that $¥overline{G}_{U}¥cap F¥neq¥phi$ , or equivalently, if $¥overline{G}_{U}¥cap F¥neq¥phi$ for every sufficiently small
nieghbourhood $U$ of $F$.

The following Theorem 2 and Theorem 3 are the generalization of Theorem
8 and Theorem 9 in [3] respectively.

Theorem 2. If $F$ is a saddle set, then
(1) there exists $x¥in X-F$ such that

$ L^{+}(x)¥cap F¥neq¥phi$ , $ J^{+}(x)¥cap(X-F)¥neq¥phi$ ,

and
(2) there exists $x^{¥prime}¥in X-F$ such that

$ L^{-}(x^{¥prime})¥cap F¥neq¥phi$ , $ J^{-}(x^{¥prime})¥cap(X-F)¥neq¥phi$ .

Conversely if (1) or (2) holds, then $F$ is a sadd& set.

Proof. First suppose that $F$ is a saddle set. Then, by Definition 2, there
exists a neighbourhood $U$ of $F$ such that

$¥overline{G}_{U}¥cap F¥neq¥phi$ .

So we can find $¥{y_{n}¥}¥subset G_{ff}$ with $y_{n}¥rightarrow y¥in F$. As $C^{+}(y_{n})¥not¥subset¥overline{U}$ and $C^{-}(y_{n})¥not¥subset¥overline{U}_{r}^{-}$

there exist $t_{n}<0$ and $t_{n}^{¥prime}>0$ such that

$¥pi(y_{n}, t)¥in U$, $t_{n}<t<t_{n}^{¥prime}$ ,

$¥pi(y_{n}, t_{n})¥in¥partial U$,

$¥pi(y_{n}, t_{n}^{¥prime})¥in¥theta U$,

where the symbol $¥partial$ represents the boundary. As $y_{n}¥rightarrow y¥leftarrow=F$ and $F$ is invariant,,
we have

$ t_{n}¥rightarrow-¥infty$ , $ t_{n}^{¥prime}¥rightarrow¥infty$ as $ n¥rightarrow¥infty$ .

Put $x_{n}=¥pi(y_{n}, t_{n})$ and $x_{n}^{¥prime}=¥pi(y_{n}, t_{n}^{¥prime})$ . Then $¥partial U$ being compact (assumption
$¥mathrm{C}¥mathrm{i})$ on $U$), we may suppose that

$x_{n}¥rightarrow x¥in¥theta U$ , $x_{n}^{¥prime}¥rightarrow x^{¥prime}¥in¥partial U$.

Then the routine continuity arguement will show that $x¥in N_{U}^{+}$ and $x^{¥prime}¥in N_{U}^{-}$ and
hence

4) See [4], p. 277.
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$ L^{+}(x)¥cap F¥neq¥phi$ , $ L^{-}(x^{¥prime})¥cap F¥neq¥phi$,

-by Theorem 1.
Now since

$¥pi(x_{n}, ¥tau_{n})=x_{n}^{¥prime}$ , $¥pi(x_{n}^{¥prime}, -¥tau_{n})=x_{n}$

-where
$¥tau_{n}=t_{n}^{¥prime}-t_{n}¥rightarrow¥infty$ as $ n¥rightarrow¥infty$ ,

-we have
$x^{¥prime}¥in J^{+}(x)$ and $x¥in J^{-}(x^{¥prime})$ .

Since $x¥in¥partial U$ and $x^{¥prime}¥in¥partial U$, and $¥partial U¥subset X-F$,

$ J^{+}(x)¥cap(X-F)¥neq¥phi$ , $ J^{-}(x)¥cap(X-F)¥neq¥phi$.

Thus we have proved the existence of $x$ and $x^{¥prime}$ with required properties.
Conversely assume that (1) holds. Then we can find a neighbourhood $U$

$.¥mathrm{o}¥mathrm{f}$ $F$ such that
$¥overline{U}¥mathrm{f}x,¥overline{U}])J^{+}(x)$ .

Let $V$ be an arbitrary neighbourhood of $F$ contained in $U$. Since $ L^{+}(x)¥cap F¥neq¥phi$,

$,C^{+}(x)¥cap V¥neq¥phi$ . Let $y¥in C^{+}(x)¥cap V$. Then as $x¥in C^{-}(y)$ and $x¥not¥in¥overline{U}$ ,

(1) $C^{-}(y)¥not¥subset¥overline{U}$ .

Since $¥overline{U}¥mathrm{D}J^{+}(x)$ , there exists a $z¥in J^{+}(x)¥cap(X-¥overline{U})$ . As $y¥in C^{+}(x),J^{+}(x)=$

$J^{+}(y)$ . So $z¥in J^{+}(y)$ . Therefore there exist $¥{y_{n}¥}¥subset X$ and $¥{t_{n}¥}¥subset R$ such that

$y_{n}¥rightarrow y$ , $ t_{n}¥rightarrow¥infty$, $¥pi(y_{n}, t_{n})¥rightarrow z$ .

If $n$ is large enough, $y_{n}¥in V$, and also from (1), $C^{-}(y_{n})¥not¥subset¥overline{U}$ . Also as $¥pi(y_{n}, t_{n})-z$

and $z¥not¥subset¥overline{U}$ , $¥pi(y_{n}, t_{n})¥not¥in¥overline{U}$ if $n$ is sufficiently large which shows that $C^{+}(y_{n})¥mathrm{I}¥overline{U}$ .
Thus, by choosing $n$ large enough to satisfy all these conditions, we have found
in $V$ a point $y_{n}$ with $C^{+}(y_{n})¥not¥subset¥overline{U}$ , $C^{-}(y_{n})¥mathrm{I}¥overline{U}$ . Therefore $ G_{U}¥cap V¥neq¥phi$ for any
neighbourhood $V$ of $F$ which means that $F$ is a saddle set.

The proof is similar if (2) is assumed.
Theorem 3. If $F$ is not a saddle set,

(1) $x¥in N+u$ implies $L^{+}(x)¥subset F$, and
$.(2)$ $x¥in N¥overline{u}$ implies $L^{-}(x)¥subset F$.

Proof. We shall give the proof of (1) only.

If $x¥in N^{+}U$ , $ L^{+}(x)¥cap F¥neq¥phi$ by Theorem 1.
If $L^{+}(x)¥not¥subset F$, $ L^{+}(x)¥cap(X-F)¥neq¥phi$ . But as $J^{+}(x)¥supset L^{+}(x)$ , $ J^{+}(x)¥cap(X-F)¥neq$

$¥phi$ . Hence, by Theorem 2, $F$ is a saddle set contrary to the assumption.
Examining the proof of Theorem 2, we immediately obtain:
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Theorem 4. If $F$ is a saddle set,

$ G_{U}¥neq¥phi$ , $ N^{+}U¥neq¥phi$ , $ N^{-}U¥neq¥phi$ ,

if $U$ is sufficientfy small.

3. Stability.
Here we shall give the criterion for stability of $F$ in terms of the structure

of $¥overline{U}-F$. Following definitions of stability and asymptotic stability are well?-
known.

Definition 3. A compact invariant set $M$ is said to be positively (nega$¥sim$

tively) stable if, for any neighbourhood $U$ of $M$, there is a neighbourhood $V$

of $M$ such that $x¥in V$ implies $C^{+}(x)¥subset U(C^{-}(x)¥subset U)$ .

Definition 4. A compact invariant set $M$ is said to be positively (negativeiy)l

asymptotically stable if it is positively (negatively) stable and also there exists
a neighbourhood $V$ of $M$ such that $x¥in V$ implies $L^{+}(x)¥subset M(L^{-}(x)¥subset M)$ .

First let us prove:
Theorem 5. $F$ is positively (negatively) asymptotically stable whenever it

is positively (negatively) stable
Proof. As is obvious from the definition, $F$ is positively stable if and only

if $N^{+}U¥cup F$ contains a neighbourhood of $F$ for any $U$. Therefore if $V$ is a
sufficiently small neighbourhood of $F$, then $N^{+}U¥supset V-F$ and hence $ G_{U}¥cap V=¥phi$.
This being valid for any $U$, $F$ is not a saddle set. So by Theorem 3, $x¥in V-$

$F¥subset N^{+}U$ implies $L^{+}(x)¥subset F$. Hence $F$ is positively asymptotically stable.
So, for a compact invariant set isolated from minimal sets, stability and

asymptotic stability are equivalent concepts.

Theorem 6. (1) $F$ is positively stable (and hence positively asymptoticaify$r$

stable) if and only if $ N^{-}U=¥phi$ for some neighbourhood $U$ of $F$.
(2) $F$ is negativety stable (and hence negativeJy asymptotically stable) if and

only if $ N_{U}^{+}=¥phi$ for some neighbourhood $U$ of $F$.

Proof. We shall give the proof of (1) only.

First let us notice that if $ N^{-}U=¥phi$ for some $U$, we have $ N^{-}V=¥phi$ for every

neighbourhood $V$ of $F$ contained in $U$. Therefore the statement “
$ N^{-}U=¥phi$ for

some $U$
” is equivalent to the stronger one “

$ N^{-}U=¥phi$ for every sufficiently small
$U‘‘$ .

Suppose that $ N^{-}U=¥phi$ for any small $U$. Then by Theorem 4, $F$ is not a
saddle set. Hence for any $U$, there exists a neighbourhood $V$ of $F$ such that

$V¥subset U$, $ G_{U}¥cap V=¥phi$.

But since $ N^{-}U=¥phi$ , this means that $N^{+}U¥supset V-F$ which implies the stability of $F_{¥vee}$
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Conversely suppose that $F$ is positively stable and $ N_{U}^{-}¥neq¥phi$ for some $U$. Let
$x¥in N¥overline{u}$ and $W$ be a neighourhood of $F$ such that $x¥not¥in W$. As $x¥in N^{-}U$ implies
$ L^{-}(x)¥cap F¥neq¥phi$ , $ C^{-}(x)¥cap V¥neq¥phi$ for any small neighbourhood $V$ of $F$. Let $ y¥in$

$.C^{-}(x)¥cap V$. Then, as $x¥not¥in W$ and $x¥in C^{+}(y)$ , we have $C^{+}(y)¥not¥subset W$. Therefore $F$

is not stable and we have come to a contradiction.

4. Application to attractor theory.

Definition 5. A compact invariant set $M$ is called a positive (negative)

attractor if and only if there exists a neighbourhood $V$ of $M$ such that $x¥in V$

implies $ L^{+}(x)¥neq¥phi$ and $L^{+}(x)¥subset M$ ($ L^{-}(x)¥neq¥phi$ and $L^{-}(x)¥subset M$ ).
Definition 6. A compact invariant set $M$ is called a positive (negative) weak

. attractor if and only if there exists a neighbourhood $V$ of $M$ such that $x¥in V$

$¥_¥mathrm{i}¥mathrm{m}¥mathrm{p}¥mathrm{l}¥mathrm{i}¥mathrm{e}¥mathrm{s}L^{+}(x)¥cap M¥neq¥phi(L^{-}(x)¥cap M¥neq¥phi)$ .

Definition 7. Let $M$ be a compact invariant set. Then the set

$A^{+}(M)=[x;x¥in X, L^{+}(x)¥neq¥phi, L^{+}(x)¥subset M]$

is called the region of positive attraction of $M$, and the set

$A^{-}(M)=[x;x¥in X,L^{-}(x)¥neq¥phi, L^{-}(x)¥subset M]$

$¥_¥mathrm{i}¥mathrm{s}$ called the region of negative attraction of $M$.
Definition 8. Let $M$ be a compact invariant set. Then the set

$a^{+}(M)=[xix¥in X, L^{+}(x)¥cap M¥neq¥phi]$

is called the region of positive weak attraction of $M$, and the set

$a^{-}(M)=[x;x¥in X, L^{-}(x)¥cap M¥neq¥phi]$

is called the region of negative weak attraction of $M$.

Evidently $A^{+}(M)$ , $A^{-}(M)$ , $a^{+}(M)$ and $a^{-}(M)$ are all invariant sets, and $M$

is contained in all of them. Also

$a^{+}(M)¥supset A^{+}(M)$ , $a^{-}(M)¥supset A^{-}(M)$ .

$M$ is a positive (negative) attractor if and only if $A^{+}(M)(A^{-}(M))$ contains
a neighbourhood of $M$, and is a positive (negative) weak attractor if and only
$¥_¥mathrm{i}¥mathrm{f}a^{+}(M)(a^{-}(M))$ contains a neighbourhood of $M$.

Lemma 1. If $F$ is not a saddle set, we have

$A^{+}(F)=a^{+}(F)$ , $A^{-}(F)=a^{-}(F)$ .

Proof. Since $a^{+}(F)¥supset A^{+}(F)$ , we have only to show that

$A^{+}(F)¥supset a^{+}(F)$ .

Let $x¥in a^{+}(F)$ . Then $ L^{+}(x)¥cap F¥neq¥emptyset$ by definition. If $L^{+}(x)¥not¥subset F$, $ L^{+}(x)¥cap$
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$¥langle$$ X-F)¥neq¥phi$. As $J^{+}(x)¥supset L^{+}(x)$ , this implies $ J^{+}(x)¥cap(X-F)¥neq¥phi$ . Since $x¥not¥in F$ is
obvious, this shows, by Theorem 2, that $F$ is a saddle set contrary to the
assumption. Hence $L^{+}(x)¥subset F$ and we get

$A^{+}(F)¥supset a^{+}(F)$ .

Similarly we can prove that $A^{-}(F)=a^{-}(F)$ .
From Lemma 1, we immediately have:
Theorem 7. If $F$ is not a saddle set, it is an attractor whenever it is $a$

weak attractor.
For convenience, we write

$A^{+}(F)-F=B^{+}(F)$ , $A^{-}(F)-F=B^{-}(F)$ ,
$a^{+}(F)-F=b^{+}(F)$ , $a^{-}(F)-F=b^{-}(F)$ .

Ihen from Lemma 1, we have

$B^{+}(F)=b^{+}(F)$ , $B^{-}(F)=b^{-}(F)$

whenever $F$ is not a saddle set.
To prepare for the proof of Theorem 8 which will be mentioned in the next

section, we now prove the following Lemmas 2, 3 and 4. Although the Theorem
8 itself is concerned with compact phase space, those lemmas are valid for non-

compact phase space. So we shall prove them without assuming the compactness
$.¥mathrm{o}¥mathrm{f}$ $X$.

Lemma 2. If $F$ is not a sadd& set, $B^{+}(F)=b^{+}(F)$ and $B^{-}(F)=b^{-}(F)$ are
both open.

Proof. As $X-F$ is open, it is sufficient to show that $B^{+}(F)$ and $B^{-}(F)$

are open in $X-F$. We shall give the proof for $B^{+}(F)$ only.
As the lemma is trivial when $ B^{+}(F)=¥phi$ or $B^{+}(F)=X-F$, we suppose that

$ B^{+}(F)¥neq¥phi$ , $B^{+}(F)¥neq X-F$.

Assume that $B^{+}(F)$ is not open in $¥mathrm{X}$?F. Then there exists $¥{x_{n}¥}¥not¥subset B^{+}(F)$

$¥cup F=A^{+}(F)$ such that $x_{n}¥rightarrow x¥in B^{+}(F)$ . Since $x_{n}¥not¥subset A^{+}(F)=a^{+}(F)$ , $ L^{+}(x_{n})¥cap F=¥phi$ .
“Therefore if $U$ is an open neighbourhood of $F$ which contains no minimal sets
except those contained in $¥mathrm{F}$ ,

$ L^{+}(x_{n})¥cap(X-U)¥neq¥phi$

for every $n$ . Indeed, if not, $L^{+}(x_{n})¥subset U¥subset¥overline{U}$ and this implies $ L^{+}(x_{n})¥cap F¥neq¥phi$ as
we have remarked in section 2.

Hence positive numbers $t_{n}>n$ can be found so that
$¥pi(x_{n}, t_{n})¥in X-U$.

Let $¥tilde{X}$ be a one-point compactification of $X$ and $(¥tilde{X}, R,¥tilde{¥pi})$ be the extension
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of $(X, R, ¥pi)$ onto $¥tilde{X}$. Also let us denote by $¥tilde{J}^{+}(x)$ the positive prolongational

limit set of $x$ in this extended dynamical system. Obviously $¥tilde{J}^{+}(x)¥cap X=J^{+}(x)$ .

Then as

$¥pi(x_{n}, t_{n})¥in X-U¥subset¥overline{X}-U$

and $¥tilde{X}-U$ is compact, $¥{¥pi(x_{n}, t_{n})¥}=$ $¥{¥tilde{¥pi}(x_{n}, t_{n})¥}$ has a cluster point $y$ in $¥tilde{X}-U¥leftarrow$

Since $ t_{n}¥rightarrow¥infty$ , $x_{n}¥rightarrow x$ , $y$ belongs to $¥tilde{J}^{+}(x)$ .

If $y¥in X$, then $y¥in J^{+}(x)$ , and as $y¥in X-U$,

$ J^{+}(x)¥cap(X-F)¥neq¥phi$.

Also as $x¥in B^{+}(F)$ , we have $ L^{+}(x)¥cap F¥neq¥phi$ . Thus by Theorem 2, $F$ must be a
saddle set contrary to the assumption.

If $y¥in¥tilde{X}$, that is, $y$ is the point at infinity, then $y¥not¥in J^{+}(x)$ . However it is
known that if the phase space is locally compact, prolongational limit set is

connected whenever it is $¥mathrm{c}¥mathrm{o}¥mathrm{m}¥mathrm{p}¥mathrm{a}¥mathrm{c}¥mathrm{t}^{5)}$ . Now $¥tilde{X}$ being compact, $¥tilde{J}^{+}(x)$ is a $¥mathrm{c}¥mathrm{o}¥mathrm{n}-$

nected set intersecting both $F$ and the point at infinity. Therefore $¥tilde{J}^{+}(x)$ must

contain a point in $X-U$, which means, by the same argument as above, that
$F$ is a saddle set. Thus we have again come to a contradiction and therefore
$B^{+}(F)$ must be open.

Lemma 3. If $F$ is not a saddle set, $A^{+}(F)¥cup A^{-}(F)$ is an open set $con-$

taining $F$.

Proof. Let $U$ be a neighbourhood of $F$. As $F$ is not a saddle set, an
open neighbourhood $V$ of $F$ can be found so that

$V¥subset¥overline{U}$ , $ G_{U}¥cap V=¥phi$.

So, if we put

$N^{+}U¥cap V=N^{+}$ , $N^{-}U¥cap V=N^{-}$ ,

we have

$V-F=N^{+}¥cup N^{-}$ .

From Theorem 1 and Lemma 1, we have

$A^{+}(F)=a^{+}(F)¥supset N+¥sigma¥supset N^{+}$ ,

$A^{-}(F)=a^{-}(F)¥supset N^{-}U¥supset N^{-}$ .

Also we know that
$A^{+}(F)¥supset F$, $A^{-}(F)¥supset F$.

Consequently

5) Cf. [2], p. 123.
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$A^{+}(F)¥cup A^{-}(F)¥supset N^{+}¥cup N^{-}¥cup F=V$.

To show that $A^{+}(F)¥cup A^{-}(F)$ is open, we have only to notice that

$A^{+}(F)¥cup A^{-}(F)=B^{+}(F)¥cup B^{-}(F)¥cup F$,
$A^{+}(F)¥cup A^{-}(F)¥supset V¥supset F$,

and hence

$A^{+}(F)¥cup A^{-}(F)=B^{+}(F)$
.

$¥cup B^{-}(F)¥cup V$.

Since $V$ is open and $B^{+}(F)$ and $B^{-}(F)$ are open by Lemma 2, $A^{+}(F)¥cup A^{-}(F)$

is open.
Lemma 4. If $F$ is not a saddle set and there exists a fundamental system

of neighbourhoods $V(F)$ of $F$ such that $V-F$ is connected for every $V¥in V(F)$ ,

then $B^{+}(F)¥cup B^{-}(F)$ is connected.
Proof. If not, there exist two sets $M$ and $N$ both non-empty and open

:in $B^{+}(F)¥cup B^{-}(F)$ such that

$B^{+}(F)¥cup B^{-}(F)=M¥cup N$, $ M¥cap N=¥phi$ .

Since $A^{+}(F)¥cup A^{-}(F)$ contains a neighbourhood of $F$ by Lemma 3, there is
a $V¥in V(F)$ such that

$B^{+}(F)¥cup B^{-}(F)¥supset V-F$.

So, $V-F$ being connected by assumption, we have either $V-F¥subset M$ or $ V-F¥subset$

$X$.

If $V-F¥subset M$, then $N¥subset X-V$ and therefore $¥overline{N}¥cap F=¥phi_{¥sim}$ As $N$ is a connected
component (or a union of connected components) of an invariant set $ B^{+}(F)¥cup$

$B^{-}(F)$ , it is itself an invariant set. Therefore $x¥in N$ implies $¥overline{C(x)}¥subset¥overline{N}$ and hence
$¥overline{C(x)}¥cap F=¥phi$ . This is however a contradiction since $x¥in N$ implies

$x¥in B^{+}(F)¥cup B^{-}(F)¥subset A^{+}(F)¥cup A^{-}(F)$

$¥sim ¥mathrm{a}¥mathrm{n}¥mathrm{d}$ hence $ L^{+}(x)¥cap F¥neq¥phi$ or $ L^{-}(x)¥cap F=¥emptyset$ . So we must have
$V-F¥not¥subset M$.

Similarly we get $V-Fc[N$ Thus we have come to a contradiction.

5. The case of a compact phase space.
Theorem 8. Let $X$ be a compact metric space and $F$ be a compact and non-

open invariant set isolated from minimal sets. If:
(1) $F$ is not a saddle set,

$.¥langle 2$ ) there exists a fundamental system of neighbourhoods $V(F)$ of $F$ such that
$V-F$ is connected for every $V¥in V(F)$ , and

$¥backslash ¥langle 3$ ) $F$ is not an attractor,
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then $A^{+}(F)¥cup A^{-}(F)$ is an open set containing $F$ with non-empty boundary and
at least one saddle minimal set is contained in this boundary.

Proof. From Lemma 3, we already know that $A^{+}(F)¥cup A^{-}(F)$ is an open$¥_$

set containing $F$.

As $F$ is not an attractor, it implies

$A^{+}(F)¥neq A^{+}(F)¥cup A^{-}(F)$ , $A^{-}(F)¥neq A^{+}(F)¥cup A^{-}(F)$ .

From this we immediately have

$ B^{+}(F)¥neq¥phi$ , $ B^{-}(F)¥neq¥phi$ , $B^{+}(F)¥neq B^{-}(F)$ .

If we notice that $B^{+}(F)$ and $B^{-}(F)$ are both open by Lemma 2 and $B^{+}(F>$

$¥cup B^{-}(F)$ is connected by Lemma 4, the first two relations imply $ W=B^{+}(F)¥cap$

$ B^{-}(F)¥neq¥phi$ and the third relation implies that $ K=B^{+}(F)¥cup B^{-}(F)-W¥neq¥phi$ .
As $W$ is open, $K$ is closed in $B^{+}(F)¥cup B^{-}(F)=K¥cup W$. So there exists

$¥{x_{n}¥}¥subset W$ such that $x_{n}¥rightarrow x¥in K$ .

Suppose, for example, $x¥in B^{+}(F)$ and $x¥not¥in B^{-}(F)$ . Since $X$ is compact,
$ L^{-}(x)¥neq¥phi$ .

As $B^{-}(F)=b^{-}(F)$ by assumption (i) and Lemma 1,

$ L^{-}(x)¥cap F=¥phi$ .

Also, as $B^{+}(F)¥cup B^{-}(F)$ is invariant,

$L^{-}(.x)¥subset¥overline{B^{+}(F)¥cup B^{-}(F)}$ .

But, as is evident from the definition, $B^{+}(F)¥cup B^{-}(F)$ contains no compact in-
variant sets at all. Therfore

$L^{-}(x)¥subset¥partial(B^{+}(F)¥cup B^{-}(F))-F$

$=¥partial(A^{+}(F)¥cup A^{-}(F))$ .

Hence $¥partial(A^{+}(F)¥cup A^{-}(F))$ is non-empty.
Let $F^{¥prime}$ be a minimal set in $L^{-}(x)$ . We shall show that $F^{¥prime}$ is a saddle set.
Let $V$ be a neighbourhood of $F^{¥prime}$ with $¥overline{V}¥cap F=¥phi$ , and $S$ be an arbitrary

neighbourhood of $F^{¥prime}$ contained in V. . As $L^{-}(x)¥supset F^{¥prime}$ , $C^{-}(x)$ intersects with 5.
Then, as $x_{n}¥rightarrow x$ , $C^{-}(x_{n})$ also intersects with $S$ if $n$ is large. Let $ y¥in C^{-}(x_{n})¥cap$

$S$.

As $x_{n}¥in W$, we have

$L^{+}(y)=L^{+}(x_{n})¥subset F$ , $L^{-}(y)=L^{-}(x_{n})¥subset F$,

and hence
$C^{+}(y)¥not¥subset¥overline{V}$ , $C^{-}(y)¥not¥subset¥overline{V}$.

this shows that $F^{¥prime}$ is a saddle set.
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From Theorem 8, we can easily derive the following:
Theorem 9. Suppose that $X$ is a compact metric space, and none of the

minimal sets of $(X, R, ¥pi)$ is a saddle set. Then a compact invariant set $F$ is an
attractor if:
(1) there exists a neighbourhood $U$ of $F$ such that $U$ contains only a finite
number of minimal sets, and
(2) there exists a fundamental system of neighbourhoods $V(F)$ of $F$ such that
$V-F$ is connected for every $V¥in V(F)$ .

Proof. As the theorem is trivial when $F$ is open, we may suppose that it
is not open.

From assumption (1), $F$ is isolated from minimal sets. So, due to Theorem
8, we have only to show that $F$ is not a saddle set.

Suppose that $F$ is a saddle set. Then, by Theorem 2, there exists $x¥in X-F$

such that

$ L^{+}(x)¥cap F¥neq¥phi$ , $ J^{+}(x)¥cap(X-F)¥neq¥phi$ .

Let $M$ be a minimal set in $L^{+}(x)¥cap F$. Then evidently

$ L^{+}(x)¥cap M¥neq¥phi$ , $ J^{+}(x)¥cap(X-M)¥neq¥phi$.

Also, from assumption (1), $M$ is isolated from other minimal sets. Thus, by
Theorem 2, $M$ is a saddle set contrary to the assumption.

Corollary. Suppose that $X$ is a compact metric space and $(X, R, ¥pi)$ has
only a finite number of minimal sets and also none of those minimd sets is $a$

saddle set. Then a compact invariant set $F$ is an attractor if there exists $a$

fundamental system of neighbourhoods $V(F)$ of $F$ such that $V-F$ is connected
for every $V¥in V(F)$ .
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