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Lr-stability of Non-Linear Differential-

Difference Equations

By D. Ramakrishna Rao

(University Nehru Nagar)

L?-stability of ordinary differential equations has been first studied by
Aaron Strauss, in his doctoral dissertation [1]. We extend his results to non-
~linear differential-difference equations. We consider the non-linear differential-
dfference equations

(1) 2 (0) =1 (s, 1)
(2) CHOEICSY
and study the L?-stability of the systems. In this paper we use the following
notations.
R” is the space of n vectors and for x € R”, ||«|| is any vector norm. Given
a number A>0, we can find ¢ which denotes the space of continuous functions
mapping the interval [—#,0] into R” and for ¢ =, HWILTSSL% eI, cg will

denote the set of ¢ ¢ for which ||¢|| £ H. We use the symbol || || to denote
the norm in whatever space under consideration. For any continuous func-
tion y(x) defined on —A<u<A, A=0, and any fixed z, 0t < A4, the
symbol y; will denote the function y(t+0), —A<0=<01i e y;Ec and is the
segment of the function y(x) by letting « range in the interval t—A<u <14,

Let f(¢,t) and g(¢,2) be non-linear in ¢ and ¢ respectively and is con-
tinuous in £, ¢ and in ¢, ¢ for all £=0 and ¢, ¢ =cy. Let 2i(0) denote the
right hand derivative of the function % (x) at u=¢. f(¢,t) and ¢g(¢,t) are
Lipschitzian in ¢ and ¢ with Lipschitz constant L.

Let =0 and let ¥ = ¢y be any given function. A function x; (¢, ¢) is said
to be a solution of (1) with initial function ¢ at time #, if there exists an A
>0 such that

(i) for each 2, ty<t<ty+A, %,(ty,¢) is defined and & cp.
¢D) 52, (20, ©) = 0. -
(i) 230 =f (@, 1), to=t=ty+A.

Similar definition can be given for the solution y;(%,, ¢) of the equation (2).

Let V(¢ ¢,¢) be a continuous function in ¢, ¢, and ¢ for t=0, ¢, ¢ < cp.
The derivative of V along the solutions of (1) and (2) will be denoted by
V(l),(g) and is defined as
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(3) Vw,o e, ¢
:th —%_ [V(t+h) xt+h(t’ go)’ yt+h(ta ¢>) - V(t’ (0’ 4’)]7
r—0+ .

where ¢ and ¢ are the solutions of (1) and (2) respectively at time %,
Lemma 1. Let f(9,t) and g (¢,t) satisfy the above conditions. Let the
solutions x;(to, ¢) and y; (o, ¢) of (1) and (2) respectively satisfy the condition
(4) [ Cto, #) —y: (B0, PP < K (Bp)e~le®=a]||p—g|| P,
where the function a(t) is continuous non-decreasing and possesses a continuous
derivative for t =0 and where K (¢) is a bounded function. If for some q, 0<
g <1, there exists a number T >0 such that, for all t=0,
(5) K(2) e~alatt+Tr~ad] < 1, ;
then there exists a function V (¢, ¢, ¢) continuous in t, ¢, and ¢ for all t =0,
o, d<cn, Hy>0, such that .
(6) Ne—¢ll=V (@ e, o) <KDV (e, ).

(7 Vw,oe,¢) < —1-a'@®V (¢, e,¢)
(8) lV(ta wla ¢1>—V(t, q02’ ¢2)l
< efT sup exC+O—a®O[]| @ —@, || +|| ¢y —¢s || P].
0=e=T
Proof of lemma 1. Let g, T be as defined above.

Let ‘

€:D) Vi, o,¢)= sup 24 (2, €)= Y1122, P)]| P el —DlatE+D—al®]
with the assumptions on K() and a(2). V(t, ¢, ¢) is defined for all ¢, ¢ =cy,,
.Hozg, M=stt_12_% K(@).

Relation (6) can easily be proved. We may prove (7) in the following
manner.

V(l) ,(2) (t, ‘0, ¢)
7@% [V (t+h, Bt ), UernCt, 6)) — V (b, 52t @), 92, )]

— 1
:h hom; [Sli% ” Lrinsr(E+h, Beon(E, 9D —Ysrrne(E+h, Yern(t, ¢>)H k)
—> T=
X e- et I+ D=a ) —sup || 24, (2, ) —Yrar(t, P P
=0
xe(l—q)[a(t+r)—a(~f)]]

T = SUD || 412, €) 1112, ]| =001 a0

h—0 t=h

—sup || @4+ (, 9D —Yr4:(2, )| e -Dlat+ D —a(®)]
=0

— 1
< T - SUp || ©14r(ty ) —Yr4a(2, || Q=L+ D=0 00—ttt 1}
0+ B <=0

=—A—-a'®)-V(, ¢, ).
Hence relation (7) is proved. Now we prove (8). We use the following
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lemma (lemma 1.3 from [2]) to prove (8).
Lemma A. Suppose t,=0, ¢,p*Scy,, H; >0, H < H are given. Then
so long as the solutions %;(ty, ¥) and 2:(t,, ¥*) of (1) cH,
| (o, ©) — @, (o, P | B < eLE—10|| @2, — P2, *|| P,
where L is the Lipschitz constant defined above ; i.e. the solutions depend con-
tinuously upon the initial values.
Proof of lemma A is based on Krasovskii’s work [3].
Proof of (8) is as follows. Using the assumption (4), we have
[ 2247(E0, ) —Y24r(t0, P)|| P e~ Dlalt+2) —a D]
< K (@)e—alett+n—adl|| p—g || ¥,
From (5) and (9) we have
V (&, 9, ¢ =sup || ©14.(, 0) —Ys1.(8, P)|| P e -Dlatt+D—al®d],
0=r=T
Using lemma A, we get

‘ V(t’ ¢1’ ¢'1) - V (t; P2, ¢2)]
%EBSPT[H Br42(ty 1) = Tpra(E, PO P + 1| Yrsr (8, 01 —Year(E, 9D P]
X el-lat+n—ad]

< elT.sup eU-Dlal+0—aW®I[|| o, —p, || ? +|| g1 — P2 || ®].
0T

Before we state our main theorem, we give the following definitions.

Definition 1. System (1) is said to be stable with respect to (2), if for
every € >0 and £,=0, there exists (¢, &)>0, that is continuous in t, for each
e and such that

o=l <3, e
implies
[f (o, @) —u: (o, P < e for all t =1

Definition 2. The trivial solution of (1) is said to be L?-stable with res-
pect to the trivial solution of (2), if the definition 1 holds and if for all £, =0,
there exists a 0,=20,(%,)> 0 such that

[l —¢l1<do

implies »
[ et ) =00, 1) 2 < o0

for all £=1¢, where #;(2,¢) and y;(%,¢) are the solutions of (1) and (2)
respectively with their initial values ¢ and ¢ respectively, at time ¢,
Theorem. If V (z, 2.(t, ), ¥: (¢, ¢)) satisfies the above assumptions given
in lemma 1. Let V be such that its derivative along the solutions of (1) and
(2) is
Vw, @& 2:(to, 9D, 92 (to, P S —c || 20 o, ©) — 2 (2o, P||2
for all t=t,, ¢, <cy, Hy>0 and for some ¢ >0, p>0. Then the zero solu-
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tion of (1) is L?-stable with respect to the zero solution of (2).

Proof of theorem. With assumptions of V (¢, 2:(¢, ¥), y:(t,, ¢)), the zero
solution of (1) is stable with respect to the zero solution of (2), follows from
the work of Hale [2].

Now let

()= V (6 50, 90, 44 oo, 9D | 2 Cto, ©) —eCtey )| 2t

for all 2=¢,. Let ¢ be fixed in [z, o),

— 1
hliéﬁi 5 r@+h -]
— 1
gh}}éi-l _}? [V(t_l_h, Tiin (t’ (0), Yeen (ti ¢>) - V(t, Xy (t()’ QD), Yt <t0$ (rb))]

. +c || :Cto, @) —y:(to, PIIP
=V, @@ 2:(o, 9), y: (o, $) +c- || 2, (8o, ©) —y:(to, P12 0.
Hence 7(¢) is non-increasing in [Z, ). But 1) =V (¢, @, ¢).
Therefore v(£)< V (2, ¢, ¢) for all £=¢,, Hence
0=V (2, %:(20, 9D, y: (2o, ¢))

£
S [ 114, ) —4iCto, @1 24V (2,0, )
for all t=>¢, so that
oo 1
/; 2 (2o, ) —y: (o, PI]] 2dt < P V (¢, ¢, ¢)

Hence the theorem follows.
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