L^p -stability of Non-Linear Differential-Difference Equations

By D. Ramakrishna RAO (University Nehru Nagar)

 L^p -stability of ordinary differential equations has been first studied by Aaron Strauss, in his doctoral dissertation [1]. We extend his results to non-linear differential-difference equations. We consider the non-linear differential-difference equations

(1)
$$x_t^1(0) = f(x_t, t)$$

(2)
$$y_t^1(0) = g(y_t, t)$$

and study the L^p -stability of the systems. In this paper we use the following notations.

 R^n is the space of n vectors and for $x \in R^n$, ||x|| is any vector norm. Given a number h>0, we can find c which denotes the space of continuous functions mapping the interval [-h,0] into R^n and for $\varphi \in c$, $||\varphi|| = \sup_{-h \le \theta \le 0} ||\varphi(\theta)||$, c_H will denote the set of $\varphi \in c$ for which $||\varphi|| \le H$. We use the symbol ||| to denote the norm in whatever space under consideration. For any continuous function y(u) defined on $-h \le u \le A$, $A \ge 0$, and any fixed t, $0 \le t \le A$, the symbol y_t will denote the function $y(t+\theta)$, $-h \le \theta \le 0$ i. e. $y_t \in c$ and is the segment of the function y(u) by letting u range in the interval $t-h \le u \le t$.

Let $f(\varphi,t)$ and $g(\psi,t)$ be non-linear in φ and ψ respectively and is continuous in t, φ and in t, ψ for all $t \ge 0$ and φ , $\psi \in c_H$. Let $x_t^1(0)$ denote the right hand derivative of the function x(u) at u=t. $f(\varphi,t)$ and $g(\psi,t)$ are Lipschitzian in φ and ψ with Lipschitz constant L.

Let $t_0 \ge 0$ and let $\varphi \in c_H$ be any given function. A function $x_t(t_0, \varphi)$ is said to be a solution of (1) with initial function φ at time t_0 , if there exists an A > 0 such that

- (i) for each t, $t_0 \le t \le t_0 + A$, $x_t(t_0, \varphi)$ is defined and $\in c_H$.
- (ii) $x_{t_0}(t_0, \varphi) = \varphi$.
- (iii) $x_t^1(0) = f(x_t, t), t_0 \le t \le t_0 + A.$

Similar definition can be given for the solution $y_t(t_0, \psi)$ of the equation (2). Let $V(t, \varphi, \psi)$ be a continuous function in t, φ , and ψ for $t \ge 0$, $\varphi, \psi \in c_H$. The derivative of V along the solutions of (1) and (2) will be denoted by $\dot{V}_{(1),(2)}$ and is defined as

$$(3) \qquad \dot{V}_{(1),(2)}(t,\varphi,\psi)$$

$$= \overline{\lim}_{h\to 0+} \frac{1}{h} [V(t+h,x_{t+h}(t,\varphi),y_{t+h}(t,\psi)) - V(t,\varphi,\psi)],$$

where φ and ψ are the solutions of (1) and (2) respectively at time t_0 .

Lemma 1. Let $f(\varphi,t)$ and $g(\psi,t)$ satisfy the above conditions. Let the solutions $x_t(t_0,\varphi)$ and $y_t(t_0,\psi)$ of (1) and (2) respectively satisfy the condition

(4)
$$||x_t(t_0,\varphi)-y_t(t_0,\psi)||^{(h)} \leq K(t_0)e^{-[\alpha(t)-\alpha(t_0)]}||\varphi-\psi||^{(h)},$$

where the function $\alpha(t)$ is continuous non-decreasing and possesses a continuous derivative for $t \ge 0$ and where K(t) is a bounded function. If for some q, 0 < q < 1, there exists a number T > 0 such that, for all $t \ge 0$,

(5)
$$K(t)e^{-q[\alpha(t+T)-\alpha(t)]} \leq 1,$$

then there exists a function $V(t, \varphi, \psi)$ continuous in t, φ , and ψ for all $t \ge 0$, $\varphi, \psi \in c_{H_0}, H_0 > 0$, such that

(6)
$$||\varphi - \psi|| \leq V(t, \varphi, \psi) \leq K(t) V(t, \varphi, \psi).$$

(7)
$$\dot{V}_{(1),(2)}(t,\varphi,\psi) \leq -(1-q)\alpha^{1}(t)V(t,\varphi,\psi)$$

(8)
$$|V(t, \varphi_{1}, \psi_{1}) - V(t, \varphi_{2}, \psi_{2})| \leq e^{LT} \sup_{0 \leq \tau \leq T} e^{\alpha(t+\tau) - \alpha(t)} [||\varphi_{1} - \varphi_{2}||^{(h)} + ||\psi_{1} - \psi_{2}||^{(h)}].$$

Proof of lemma 1. Let q, T be as defined above.

Let

$$(9) V(t,\varphi,\psi) = \sup_{\tau \ge 0} ||x_{t+\tau}(t,\varphi) - y_{t+\tau}(t,\psi)||^{(h)} e^{(1-q)[\alpha(t+\tau) - \alpha(t)]}$$

with the assumptions on K(t) and $\alpha(t)$. $V(t, \varphi, \psi)$ is defined for all $\varphi, \psi \in c_{H_0}$, $H_0 = \frac{K}{M}$, $M = \sup_{t \ge 0} K(t)$.

Relation (6) can easily be proved. We may prove (7) in the following manner.

$$\begin{split} \dot{V}_{(1),(2)}(t,\varphi,\psi) \\ = & \overline{\lim}_{h \to 0+} \frac{1}{h} \left[V\left(t+h, x_{t+h}(t,\varphi), y_{t+h}(t,\psi)\right) - V\left(t, x_{t}(t,\varphi), y_{t}(t,\psi)\right) \right] \\ = & \overline{\lim}_{h \to 0+} \frac{1}{h} \left[\sup_{\tau \geq 0} || x_{t+h+\tau}(t+h, x_{t+h}(t,\varphi)) - y_{t+h+\tau}(t+h, y_{t+h}(t,\varphi)) ||^{(h)} \\ & \times e^{(1-q)[\alpha(t+h+\tau)-\alpha(t+h)]} - \sup_{\tau \geq 0} || x_{t+\tau}(t,\varphi) - y_{t+\tau}(t,\psi) ||^{(h)} \\ & \times e^{(1-q)[\alpha(t+\tau)-\alpha(t)]} \right] \\ = & \overline{\lim}_{h \to 0+} \frac{1}{h} \sup_{\tau \geq h} || x_{t+\tau}(t,\varphi) - y_{t+\tau}(t,\psi) || e^{(1-q)[\alpha(t+\tau)-\alpha(t)]} \\ & - \sup_{\tau \geq 0} || x_{t+\tau}(t,\varphi) - y_{t+\tau}(t,\psi) || e^{(1-q)[\alpha(t+\tau)-\alpha(t)]} \left\{ e^{(1-q)[\alpha(t)-\alpha(t+h)]} - 1 \right\} \\ \leq & \overline{\lim}_{h \to 0+} \frac{1}{h} \sup_{\tau \geq 0} || x_{t+\tau}(t,\varphi) - y_{t+\tau}(t,\psi) || e^{(1-q)[\alpha(t+\tau)-\alpha(t)]} \left\{ e^{(1-q)[\alpha(t)-\alpha(t+h)]} - 1 \right\} \\ = & - (1-q)\alpha^{1}(t) \cdot V(t,\varphi,\psi). \end{split}$$

Hence relation (7) is proved. Now we prove (8). We use the following

lemma (lemma 1.3 from [2]) to prove (8).

Lemma A. Suppose $t_0 \ge 0$, φ , $\varphi^* \in c_{H_1}$, $H_1 > 0$, $H_1 < H$ are given. Then so long as the solutions $x_t(t_0, \varphi)$ and $x_t(t_0, \varphi^*)$ of $(1) \in c_H$,

$$||x_t(t_0,\varphi)-x_t(t_0,\varphi^*)||^{(h)} \leq e^{L(t-t_0)}||\varphi_{t_0}-\varphi_{t_0}^*||^{(h)},$$

where L is the Lipschitz constant defined above; i.e. the solutions depend continuously upon the initial values.

Proof of lemma A is based on Krasovskii's work [3].

Proof of (8) is as follows. Using the assumption (4), we have

$$\begin{aligned} &||x_{t+\tau}(t_0,\varphi) - y_{t+\tau}(t_0,\psi)||^{(h)}e^{(1-q)[\alpha(t+\tau) - \alpha(t)]} \\ &\leq K(t)e^{-q[\alpha(t+\tau) - \alpha(t)]}||\varphi - \psi||^{(h)}. \end{aligned}$$

From (5) and (9) we have

$$V(t,\varphi,\psi) = \sup_{0 \leq \tau \leq T} ||x_{t+\tau}(t,\varphi) - y_{t+\tau}(t,\psi)||^{(h)} e^{(1-q)[\alpha(t+\tau) - \alpha(t)]}.$$

Using lemma A, we get

$$\begin{split} &|V(t,\varphi_{1},\psi_{1})-V(t,\varphi_{2},\psi_{2})|\\ &\leq \sup_{0\leq \tau\leq T} \left[||x_{t+\tau}(t,\varphi_{1})-x_{t+\tau}(t,\varphi_{2})||^{(h)}+||y_{t+\tau}(t,\psi_{1})-y_{t+\tau}(t,\psi_{2})||^{(h)}\right]\\ &\quad \times e^{(1-q)[\alpha(t+\tau)-\alpha(t)]}\\ &\leq e^{LT} \cdot \sup_{0\leq \tau\leq T} e^{(1-q)[\alpha(t+\tau)-\alpha(t)]} \left[||\varphi_{1}-\varphi_{2}||^{(h)}+||\psi_{1}-\psi_{2}||^{(h)}\right]. \end{split}$$

Before we state our main theorem, we give the following definitions.

Definition 1. System (1) is said to be *stable with respect to* (2), if for every $\varepsilon > 0$ and $t_0 \ge 0$, there exists $\delta(t_0, \varepsilon) > 0$, that is continuous in t_0 for each ε and such that

$$||\varphi-\psi||<\delta(t_0,\varepsilon)$$

implies

$$||x_t(t_0, \varphi) - y_t(t_0, \psi)|| < \varepsilon$$
 for all $t \ge t_0$.

Definition 2. The trivial solution of (1) is said to be L^{p} -stable with respect to the trivial solution of (2), if the definition 1 holds and if for all $t_0 \ge 0$, there exists a $\delta_0 = \delta_0(t_0) > 0$ such that

$$||\varphi-\psi||<\delta_0$$

implies

$$\int_{t_0}^{\infty} ||x_t(t,\varphi) - y_t(t_0,\psi)||^p dt < \infty$$

for all $t \ge t_0$, where $x_t(t_0, \varphi)$ and $y_t(t_0, \psi)$ are the solutions of (1) and (2) respectively with their initial values φ and ψ respectively, at time t_0 .

Theorem. If $V(t, x_t(t_0, \varphi), y_t(t_0, \psi))$ satisfies the above assumptions given in lemma 1. Let V be such that its derivative along the solutions of (1) and (2) is

$$\dot{V}_{(1),(2)}(t,x_{t}(t_{0},\varphi),y_{t}(t_{0},\psi)) \leq -c ||x_{t}(t_{0},\varphi)-y_{t}(t_{0},\psi)||^{p}$$
 for all $t \geq t_{0}$, $\varphi, \psi \in c_{H_{0}}$ $H_{0} > 0$ and for some $c > 0$, $p > 0$. Then the zero solu-

tion of (1) is L^p -stable with respect to the zero solution of (2).

Proof of theorem. With assumptions of $V(t, x_t(t_0, \varphi), y_t(t_0, \psi))$, the zero solution of (1) is stable with respect to the zero solution of (2), follows from the work of Hale [2].

Now let

$$\gamma(t) = V(t, x_t(t_0, \varphi), y_t(t_0, \psi)) + c \int_{t_0}^{t} ||x_t(t_0, \varphi) - y_t(t_0, \psi)||^{p} dt$$

for all $t \ge t_0$. Let t be fixed in $[t_0, \infty)$,

$$\begin{split} & \lim_{h \to 0+} \frac{1}{h} \left[\gamma(t+h) - \gamma(t) \right] \\ & \leq \lim_{h \to 0+} \frac{1}{h} \left[V(t+h, x_{t+h}(t, \varphi), y_{t+h}(t, \psi)) - V(t, x_t(t_0, \varphi), y_t(t_0, \psi)) \right] \\ & \quad + c \left| |x_t(t_0, \varphi) - y_t(t_0, \psi)| \right|^p \\ & = \dot{V}_{(1), (2)}(t, x_t(t_0, \varphi), y_t(t_0, \psi)) + c \cdot ||x_t(t_0, \varphi) - y_t(t_0, \psi)||^p \leq 0. \end{split}$$

 $=V_{(1),(2)}(t,x_t(t_0,\varphi),y_t(t_0,\psi))+c\cdot||x_t(t_0,\varphi)-y_t(t_0,\psi)||^p\leq 0.$ Hence $\gamma(t)$ is non-increasing in $[t_0,\infty)$. But $\gamma(t_0)=V(t_0,\varphi,\psi)$.

Therefore $\gamma(t) \leq V(t_0, \varphi, \psi)$ for all $t \geq t_0$. Hence

$$\begin{split} 0 & \leq V(t, x_t(t_0, \varphi), y_t(t_0, \psi)) \\ \leq & - c \int_{t_0}^t ||x_t(t_0, \varphi) - y_t(t_0, \psi)||^p dt + V(t_0, \varphi, \psi) \end{split}$$

for all $t \ge t_0$, so that

$$\int_{t_0}^{\infty} ||x_t(t_0,\varphi) - y_t(t_0,\psi)||^p dt \leq \frac{1}{c} \cdot V(t_0,\varphi,\psi)$$

Hence the theorem follows.

References

- [1] Aaron Strauss, L^p-stabilty of differential equations and Lyapunov functions, form the autuors doctoral dissertation, Univ. of Wisconsin, Madison, (1964).
- [2] J.K. Hale, Asymptotic behavior of solutions of differential-difference equations. Tech. Report 61-10, RIAS, Baltimore.
- [3] N.N. Krasovskii, Some problems in stability of motion. Moscow, 1959.
- [4] La Salle and Lefschetz, The stability theory of Lyapunov. Academic Press, 1961.

(Ricevita la 18-an de novembro, 1965)