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Note on Perturbation and Degeneration of Abstract

Differential Equations in Banach Space
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Perturbation and degeneration of abstract differential equations in a Banach
space was treated systematically by Prof. M. Nagumo in [1], where a necessary
and sufficient condition in order that a solution of

(Do du(®)[dt+ Ay()u(t) = fo(2)
(resp. (2)o ApBDu()=fo(t)
is completely stable with respect to the equation
D ' du(®)|dt+ A:(Du@) = f(2)

(resp. (2) edu(®)|dt+A(Du(®)=rf.(¥))

for e—0 was given in a general form. Roughly speaking the complete stability
means that the solution #.(z) of (1), (resp. (2),) converges uniformly in s<¢
to that #(2) of (1) (resp. (2)y) as €—0 when the initial value of u, at ¢=s
tends to that of «, at t=s and f;(¢) converges uniformly to f,(¢) ; the uniformi-
ty in the convergence of u, is required also with respect to the initial time s.
Usually Ay(#) is weaker than A.(¢), ¢ >0, namely D(A4,(¢))DD(A:()) if £¢>0.

The object of the present paper is to give an example of a complete stable
perturbation and degeneration. The example, which is rather artificial, is the
same one that was investigated in [2]. However, only the weak convergence
of the solution of (1), was investigated there, and the result will be completed
in this paper by showing that the same thing remains valid with regard to
strong convergence. The equations.in the example are integrable and the solu-
tions can be expressed making use of the fundamental solution which can be
constructed by the method of [2], and hence the greater part of the proof is
occupied by .examining the convergence of the fundamental solution of (1),
(resp. (2);) as e—0. ' :

1. Preliminaries. Throughout this paper we denote by X a Banach space.
We use only the strong topology of X unless otherwise stated and denote
‘““convergence in the strong (operator) topology’’, ‘‘uniform convergence in the
strong (operator) topology’ by the symbols “—’, ‘=’ respectively. For an
operator T of X into itself D(7T) and R(T) denote the domain and the range
of T respectively. The following theorem is proved in [2].
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Theorem A. Let A(t), 0=t < T, be densely defined closed linear operators

in X. Suppose that {A(t)} satisfies the following assumptions:
)  for each t=[0, T the resolvent set of A(t) contains a fized closed angular
domain )= {A: arg A& (—0, 0,)} where 0, is a positive number with 0< 0, <r/2.
For any t€[0, T] and A€, ||A—A@) | £ M/|A| where M is a constant
independent of A and t;
D A@™ is continuously differentiable in t in the uniform operator topology ;
(AIl) there exists a positive number p<1 such that R(dA(t)~dt)C D(A®)?)
and A@)P-dA@)7Ydt is strongly continuous in 0<t < T. Hence with some posi-
tive constant N independent of ¢t we have || A(£)P-dA(t)~/dt|| < N.

Then there exists a fundamental solution U(t,s), 0Zs=<t< T, of the equatzon
@D du(®)|dt+A@Du@) =1):
if s<t, R(U@, $))CD(A®)) and U(t,s) satisfies

UG, P+ ADUE, =0, 0=s<t<T, U(, s)=1I,

C

P——U(t ) —IIA(t)U(t,s)Hg;:.

If f(&) is strongly Hélder continuous, then the unique solution of (1.1) in s<
t < T satisfying u(s)=u is given by

(1.2) w®=UG, du+t [ UG ) f@do.
By (I) A(t) generates an analytic semi-group
-1 . B
(1.3) exp(—aA(t))=mﬁe (=A@, a>0,

where I" is a smooth path running in >} from ococe—fi to coe%i, In what fol-
lows we use C to denote constants depending only on T, 6,, M, p, N which
appeared in the assumptions (I), (II), (III) of Theorem A. The fundamental
solution U(t,s) of (1.1) is constructed in the following manner:

1.4 Ut s)=exp(—@&—s)A@)+W(,s),

(1.5) Wt s)= / exp (= (=) A@)IR(z, )d,

(1.6) R(,s) =ZZ‘=0Rm(t, s),
Ry(2,5)=(0/0t+0/0s) exp(—(—s)A())

.8 Rt )= / ‘RiCt, D) Rpr(z, )d, for m=2,3, .

As is easily seen for each m
| R (2, || = C™ I'(0)™ (2~ S)’”"‘I/T'(mﬂ)
In what follows [A.(); 05t T, O§8_<_z-:0} is to be a family of closed linear
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operators in X which satisfy the asumptions (I), (II), (II) of Theorem A with
constants 0,, M, p, N independent of ¢ and e.

2. Singular perturbation for (1),. In this section we investigate the beha-
viour of the solution of (1), as ¢} 0.

Theorem 1. Let Ay(t), 0Lt < T, be a family of closed linear operators
in X which satisfy the assumptions (1), (II) of Theorem A.  Suppose that
D(A,()?")D R(dA,(t)7|dt) for some positive number o' <1. We assume also
that

(a) exp(—0A4,())>I in 02t T as 610,
(b) AD DA™ in 0Z:t<T as €l0,
) dA.(D)Ydt > dA()Ydt in 0Zt<T as el0.

Then for each s€[0, T), uyeX and a Hélder continuous function fo(t), 0=t
< T, with values in X a solution uy(t;s) of the initial value problem
B du(®)]dt+ADu®)=f(t), s<t=T, u(s)=uy,
exists in s<t< T and is unique there. Furthermore, the solution u.(t;s) of
the initial value problem
du@®)|dt+A.Du)=,f:(t), s<tZT, uls)=u,
converges to uy(t;s) in the following manner:
u:(t35)Du(tss) in 0s<5et LT,
du(t; 8)|dt > duy(t; s)/ds
Ac(Du(t;55) > Ac(Due(t s s)
for any 6 >0, provided that
(1) weg—uy as €0,
(1) f@®2fE in 0Z5t<T as el0,
Gm' IFRORNACOIIE K(t—r)ﬁ} i O0srcicT
o) —fo(n|l = K(z—n)*

where K and « are positive constants independent of t, r and e.

} in §<s40<t<T,

- Remark. The assumption (a) is satisfied if for any g in some dense subset
of X there exists a sequence {g,,(£)} CD(A,()) such that A,(#)g,() is conti-
nuous in 0L¢< T and ¢,(¢)>¢g in 05t < T as n—>co,

Proof of Theorem 1. Let U(t,5), W(¢,5), R'(t,s), R, (¢,5), m=1,2, -,
be operator valued functions with A.(z) in place of A(z) in the definition of
the corresponding functions in (1.4)-(1.8). In the proof of the present theo-

rem we often use the following elementary lemma whose proof might be omit-
ted.

Lemma 1. Let A be some set and let T:(t), €>0, t€A, be a family of
bounded operators in X which converges to 0 as ¢ |0 in the strong operator topo-
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logy uniformly in A. Then for any compact subset K of X {T.(8)u} converges
to 0 in the strong operator topology as €| 0 uniformly in t=A4 and u=K.
Lemma 2. Under the assumptions of Theorem 1 .
exp(—(t—s)A(2)) > exp (— (t—5) Ay(2))
m0Ss=Ze T ‘ ‘
Proof. Let g be an arbitrary element of X which will be fixed throughout
the proof. Let C, be a constant such that '
llexp(—(—s)A.NI|I =C;
for 0<s<¢< T and e=0. For any 6>0
exp (—(—s)A:())g—exp (—(t—s)A(2))g
=exp(—(t—s)A.()) {I—exp(—d A, (2D} g
2.1 +exp (—(t—s)A:(@®) fexp (=0 Ay(®)) —exp (=A@} g
+ {exp (= (@t —5+0)A:(2)) —exp (— (¢ —s5+0) Aot} g
+exp (— (=) Ao(®)) {exp (—d Ay (D) — 1} g.
For any given % >0 there exist by assumption a positive number ¢ depending
.only on 7 such that for any &[0, T7]
(2.2) - Cill{I—exp(=0 AN gll <m/4.
For any such 0 the first and the last term of (2.1) are dominated by %/4 in
norm for any t€[0, T]. Using (1.3) and noting the uniform boundedness of
HA@ A=A || we get

Cill{exp (=0 Ay(2))—exp (=0 A} gl }
2.3) [[{exp (=@ —s+e)A(@®)—exp (—(@E—s+0) AN} gl
=C f e dReMA DT - A (@)Y A A—A,@)) 9| | 4A]
rel IAM=N

tC [ e RAA- A g1+ A=A g1} 44|

AET, \|ZN v
C
<CN sup [[{A:@D'— A, A,®) A=Ay g ||+ Sl
AT, |AI=N N¢

Let N be so large that 8C||g||<NJ. Clearly such N can be chosen depending
only on 7. Then the subset

K={A0)(A—A())Tg: 0=t < T, AT, |A| £ N}
of X is a compact subset determined only by %. Then it follows from Lemma
1 that there exists a positive constant e(%) depending only on % such that for
any t<[0, T] and heK

H{A:(&) = Ag(@) 1 R||<7/8CN.

Hence the first term on the right of (2.3) is dominated by 7/8. Thus we get

llexp (—(—s)A:())g—exp(—(E—s) A9 |I<7
which completes the proof of Lemma 2.
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In order to show that Ay(x), 0<t< T, satisfies the assumption (III) of
Theorem A it is sufficient to prove the following lemma in which we write ¢
instead of min (p, 0").

Lemma 3. For any p, with 0< 0, <0

A ()P dA () dt > Ag()Pr-dAy(2) Y dt
in0<t<T asel0.

Proof. The lemma is easily proved using that

AP dA () dt = A ()PP A ()P - dA ()7} dt

_sinz(o—0) / T aemp (At Ag(2)) 7 Ag(e)P - dAL(D) Y d d A
V4 0

and the commutativity of (A+A4.())~! and A, (&)°, e=0.
Lemma 4. For any fized 6 >0 R°(t,5) > R(¢t,5s) as e | 0in 6 <s+0=t=T.
Proof. Let g be an arbitrary element of X which will be fixed throughout
the Proof. Let us show by induction that for any m and § >0

2.9 R (#,5) >R, (1)

in 0<s+6<t<T. That (2.4) is true for m=1 can be proved just as Lemma
2. Suppose that (2.4) is true for some m>1. When t—s=¢ and 0<d' <4

H R;H.l(t, s)g_R(,)n.H(ts S>g ||

< 2Cm+1 [’(01)'" </‘s+sl
@25  LTOored \Js

+C_sup_ |I{R;, (3, )R, (s, }gll

¢
+ >(t—0)91"1(0—5)””’1‘1d0llgli

t—s’

+C  sup |[{R}(t,0)—R{( D} R, (0,99l

s+é/so=t-8'

Let 7 be any given positive number. Then it is easy to show that if ¢'=
8'(y, 0) is sﬁfﬁciently small depending only on % and § (except m) the first term
on the right of (2.5) is dominated by %/3. By the induction hypothesis if ¢ is
sufficiently small depending only on % and ¢'=d"(y,d) the second term on the
right of (2.5) is also dominated by 7%/3. Noting that {R?n(d, g0 s+’ £
o< T} is a compact subset depending only on ’=6¢'(y,d) we get with the aid
of Lemma 1 that the last term on the right of (2.5) is dominated by 7/3 pro-
vided that ¢ is sufficiently small depending only on 7 and 6’=d6"(%,46). q.e.d.

With the aid of Lemmas 2, 3, 4 we get without difficulty

Lemma 5. AselO0

Wit s) > W(s,s), U(s)>U,s)

in 0se < T, .

End of the proof of Theorem 1. That u.(t,s) > uy(t,s) is easily verified
by (1.2) and Lemma 5. The remaining part of the theorem can be proved
without difficulty, and the proof may be omitted.
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3. Degeneration of (2),. In this section we investigate the behaviour of
the solution of (2); as ¢ 0.

Theorem 2. Suppose that Ay(t)™' exists and is strongly continuwous in 0=
t<T. Suppose also that A.()'>A,) in 0<t<T as el 0. Then the
solution u.(¢;s) of

eduldt+A.Du@) =), uls)=u.(s)
converges to the solution uy(£) =A@ () of
A(BDu®) =1 ()
in the following manner:
@3.D u(t;s) 2u(®) in 0Z5s=:t < T,
3.2 A Du,t55) > ADut) in 6ZZs+065t T
for any 6 >0 provided that

(1) u.(8) D Ay(s)"fo(s) in 0Zs£<T as €0,

(i) @ > f) in 02t T as €0,

Gi) | AO—LONSKEE—P* for 0Sr<t<T,
where the constants K and a are independent of ¢, r and e.

Proof. As is easily seen A,(2)=e"14,(¢) satisfies the assumptions (I), (II),
(III) of Theorem A with 6,, M, p unchanged and with N replaced by ¢'*?N.
Therefore the fundamental solution

U.(t, ) =exp (— @ —)A()) + W.(2, )

du(®)]dt+ A, (B)u(t) =0

is constructed as in (1.4)-(1.8). Following [2; pp. 242-243] we get
| We, D1l < Cete(z, ),
| £ We@, 1| < Cetmp(z—s)r,

The solution u.(¢;s) is given by

uelt3 )= Uty D) 67 [ Butt, faoddo

of

Noting

et [ Wute, 021:0d0 = 40 [ Do Witt, 1. 002do|

< ['er—aylfi(oildo
we get )
Wett, () et [ Wl u()da 0
in 0<s<t<T. To conclude (8.1) it remains to show that
exp (— = A (ue) +e [exp(~1—D L) fil)da |
SAW @) in 0LKs<t£T. I

3.3
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Noting
E"lf exp (= (=) A, () do=As(®) T—exp (— (t— ) Ao())

we get .

exp (— =) A+ [ exp (= t—) AV fi(0)do

B.4) =ADAD +exp (— =) A fue(s) — A (D}
et f exp (— (=) ALY (Fi(0) — £i(D))do.

The norm of the last term on the .right of (3.4) is dominated by

&7 Aiﬂ“*”fj&@)”’“ exp (— (=) A (filo)—ful®))do 1‘

¢ .
< CKs“/f (t—0)* 7 do S CKe"(a—7)"1(t—s)27.

for any v with 0<yr<a. As for the second term

|| exp (— (t— ) A () {e () — A (O£ (O} ]

= Cllua() — A oD +HC I A1 fe(8) — Ao fo DI
+1lexp (= E=9) A(D) {A(D £ — Ao(H T fo (D} II.
" The proof of (8.3) is completed by treating the last term of the above inequ-
ality with the aid of the following elementary lemma.

Lemma 6. If F(t) is a strongly continuous function in 0=t < T with val-
ues in X, then ‘

exp (— (t—s) A (F(&)—F(s)) >0

in 0Zs=ZtZ<T as el

It is straightforward to show (3.2), and hence the proof may be omitted.

4. Example. In this section an example to which Theorems 1 and 2 can.
be applied is given. It is not trivial but should be admitted to be artificial.
The example for (1), is the same one that was treated in [2] and is the follo-
wing initial-boundary value problem '

ou 0%u e Ou u
9t oz > x—t 0z  (x—12)? -
u(z, a)=u(t,b)=0
where it is assumed that —co<a<0< T<b<Coo. We choose X=La,b] as
the basic Banach space. For each ¢ set

fi a<z<b,

du 1

V)= {uELz[a, b] :—_x_’ -

where the derivatives in the above are taken in the distribution sence. The:
operator A.(z) is defined in the following manner: uz< V() belongs to D(A.(2))

€L a,b], u(a)=u(b) =O}
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and A.(Du=f L a,b] if for any ve V(s)

o du dv du ¥ ud b
/; {e de dx te dx x—t + (x—t)z}dx_/a fodz.
It was shown in [2] that A.(), 05t< T, 0<e<4/5, satisfies the assumptions
D, D, JID uniformly in ¢z and e with p=1/2. It is also possible to express

the solution of A.(#)u=g explicity and the formula is given in [2]. Let A,()
be the operator

(Ao(®)w) () = () [(z— )2,
If gECEo(a, b) we can integrate by part in all the integrals of the formula for
A (#)"1g and easily show that ‘
' A®g > A,  dA@)'gldr > dA)g/dr.
Since Cgo(a, b) is dense in L%[q,b] the same things remain valid for any g&
L*a,b]. To verify that the assumption (a) of Theorem 1 is satisfied it suffices
to show that a ‘sequence {g,,(#)} as was mentioned in the remark just after the
theorem can be constructed to any g&L%[a,b]. It is elementary to see that
the sequence defined by g¢,,(2) =(I+n"14,(2)) !¢ has such a property. Thus all

the assumptions of Theorems 1 and 2 are satisfied by {A4.(#)} of the present
-example. ’
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