PageHeader : Funkcialaj Ekvacioj, a (1965), 5-37 Title : Hukuhara'sProblem for Partial Title : Differential Equations AuthorInfo : By Setuzo YOSIDA AuthorInfo : (University of Tokyo) section : Introduction. section : 1. Hukuhara's problem for Cinquini's equations. subsection : 1. 1. Construction of the approximating sequence. subsection : 1. 2. Uniform convergence of the sequence. section : 2. Uniqueness and stability of solution. subsection : 2. 1. Uniqueness of solution. subsection : 2. 3. Stability of solution with respect to $f^{i\prime}s$ . subsection : 2. 4. Relaxation of the conditions. section : 3. Quasi-linear and semi-linear equations. subsection : 3. 1. Existence of solution for quasi-linear equations. subsection : 3. 2. Uniqueness and stability of solution for quasi-linear equations. subsection : 3. 3. Existence of solution for semi-linear equations. subsection : 3. 4. Uniqueness and stability of solution for semi-linear equations. subsection : 3. 5. Conditions for finite domains. section : 4. Generalized Szmydt-Lasota's data for second order hyperbolic equations in two independent variables. Existence of solution. In this subsection : 4. 1. Definition of the problem. subsection : 4. 2. Determination of $t^{i^{\prime}}s$ and $x^{i^{\prime}}s$ . subsection : 4. 3. Transformation $\hat{T}$ . subsection : 4. 4. Continuity of $\hat{T}$ . Existence of solution. section : 5. Uniqueness and stability of solution. subsection : 5. 1. Uniqueness of solution- subsection : 5. 2. Stability of solution with respect to $\varphi^{i\prime}$ s and $\psi^{i;}$ s. subsection : 5. 3. Stability of solution with respect to $T^{i;}s$ and $X^{ir}s$ . subsection : 5. 5. Stability of solution with respect to $f^{i^{\gamma}}s$ . section : References