PageHeader : Funkcialaj Ekvacioj, 1 (1958), 1?50 Title : Geometric Study of Nonlinear Title : Autonomous Oscillations AuthorInfo : By Minoru URABE AuthorInfo : (Hiroshima University) section : Preface section : CONTENTS section : CHAPTER I MOVING ORTHONORMAL SYSTEM ALONG A CLOSED PATH subsection : 1. 1 Continuous moving orthonormal system subsection : 1. 2 Convenient method to construct a moving orthonormal system subsection : 1. 3 Remarks section : CHAPTER II VARIATION PROBLEM subsection : 2. 1 Equations for normal variations of solutions subsection : 2. 2 Equations for normal components of variations of solutions subsection : 2. 3 Multipliers of solutions of the normal variational equation subsection : 2. 4 Orbital stability section : CHAPTER III PERTURBATION PROBLEM subsection : 3. 1 Fundamental formulas subsection : 3. 2 Existence of periodic solutions for the perturbed system subsection : 3.3 Stability of a periodic solution of the perturbed system section : CHAPTER IV PERTURBATION OF A FULLY OSCILLATORY SYSTEM subsection : 4. 1 Existence of a continuous universal period subsection : 4. 2 Moving orthonormal systems along closed paths subsection : 4. 3 Existence of periodic solutions for the perturbed system subsection : 4. 4 Stability of a periodic solution of the perturbed system subsection : 4. 5 Remarks section : CHAPTER V PERTURBATION OF A PARTIALLY OSCILLATORY SYSTEM subsection : 5. 1 m-parameter family of periodic sclutions subsection : 5. 2 Existence of periodic solutions for the perturbed system section : CHAPTER VI TWO DIMENSIONAL AUTONOMOUS SYSTEM subsection : 6. 1 Fundamental formulas subsection : 6. 2 Variation problem and perturbation problem subsection : 6. 3 Perturbation of a fully oscillatory system subsection : Example section : CHAPTER VII ANALYTIC TWO DIEMNSIONAL AUTONOMOUS SYSTEM subsection : 7. 1 Fundamental formulas subsection : 7. 2 Orbital stability subsection : 7. 3 Perturbation problem subsection : 7. 4 Perturbation of a fully oscillatory system section : References